Startseite Optimal design of pressure swing adsorption units for hydrogen recovery under uncertainty
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optimal design of pressure swing adsorption units for hydrogen recovery under uncertainty

  • Oleg Golubyatnikov ORCID logo EMAIL logo , Evgeny Akulinin und Stanislav Dvoretsky
Veröffentlicht/Copyright: 4. Mai 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The paper proposes an approach to the optimal design of pressure swing adsorption (PSA) units for hydrogen recovery under uncertainty, which provides a reasonable margin of the potential resource of the PSA hydrogen unit and compensates for the negative impact of a random change in uncertain parameters within specified limits. A heuristic iterative algorithm is proposed to solve the design problem with a profit criterion, which is guaranteed to provide the technological requirements for the PSA unit, regardless of the values that take uncertain parameters from the specified intervals of their possible change. An experimental verification of the approach with the root-mean-square error of 19.43 % has been carried out. Optimization problems of searching for a combination of mode and design parameters under uncertainty for a range of 4-bed 4-step VPSA units with a capacity of 100–2000 L/min STP have been solved taking into account the requirements for hydrogen purity of 99.99+ %, gas inlet velocity of 0.2 m/s, and bed pressure drop (no more than 1 atm). It has been established that taking into account uncertainties leads to an increase in energy costs by 8–10 %, a decrease in profit by 10–15 %, and a decrease in hydrogen recovery by 4–5 %, which is a payment for the uninterrupted operation of the PSA unit. The effect of uncertain parameters (percentage composition of the gas mixture; gas temperature; the diameter of adsorbent particles) on the key indicators of the PSA process (recovery, profit, hydrogen purity, unit capacity) has been established and trends in adsorption duration, adsorption and desorption pressure, P/F ratio, valve capacity, bed length, adsorber diameter for design of hydrogen PSA unit, which are necessary for subsequent design and scaling of units.


Corresponding author: Oleg Golubyatnikov, Tambov State Technical University, Ul. Sovetskaya str., 106, Tambov, 392000, Russia, E-mail:

Award Identifier / Grant number: 21-79-00092

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The study was carried out at the expense of a grant from the Russian Science Foundation (Project No. 21-79-00092, https://rscf.ru/en/project/21-79-00092/).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

APPENDIX

See Tables 48.

Table 4:

Mathematical model of the PSA process for hydrogen recovery.

Description Expression
Component-wise material balance in the gas phase flow along the height of the adsorbent ci(x,τ)τ+(1ε)εqi(x,τ)τ+(νgci(x,τ))x=x(DLc(x,τ)yi(x,τ)x),i=H2,CO2,CO
Sorption kinetics (Gluckauf formula) qi(x,τ)τ=ki(qi*qi(x,τ))
Heat propagation in the gas mixture flow along the height of the adsorbent CgρgTg(x,τ)τ+CgρgνgTg(x,τ)xhαε[Ta(x,τ)Tg(x,τ)]=λg2Tgx2
Heat propagation in the adsorbent CaρaTa(x,τ)τ+αh[Ta(x,τ)Tg(x,τ)]iHiqi(x,τ)τ=λa2Ta(x,τ)x2
Continuity of the flow iciνg(x,τ)xνg(icix)=0
Ergun’s equation Px=(150(1ε)2dp2ψ2εμgνg+1.75Mgρg(1ε)dpψε3νg2)
Valve equation Gin(τ)=Kv(PadsPadsin),Geq(τ)=Kv(PeqPppe)
Throttle equation Gdes(τ)=(P/F)Gadsout(τ,L),0ττads
Pressure set in adsorbers dPadsindτ=KadsPdesGin(τ)PadsVcolε(PadsPadsin)
Depressurizing in adsorbers dPdesindτ=KdesPdesGdes(τ)PadsVcolε(PdesPdesin)
Pressurizing pressure equalization dPppedτ=KppePeqGeq(τ)PadsVcolε(PeqPppe)
Depressurizing pressure equalization dPdpedτ=dPppedτ
The Dubinin–Radushkevich–Astakhov equation qi*=W0vi*exp[(RTglg(Ps,i/Pp,i)βiE)n]
Unit capacity Gout=(GadsoutGdes)(Padsout/PSTP)(TSTP/Tg,adsout)
Hydrogen recovery η=cH2outGoutcH2inGin100%
Table 5:

Initial conditions of the PSA model.

Adsorption, first cycle Depressurizing pressure equalization Desorption Pressurizing pressure equalization Adsorption, subsequent cycles
ci(x,0)=ci0 ci(x,τ)=ciads(x,τads) ci(x,τ)=cidpe(x,τdpe) ci(x,τ)=cides(x,τdes) ci(x,τ)=cippe(x,τppe)
qi(x,0)=0 qi(x,τ)=qiads(x,τads) qi(x,τ)=qidpe(x,τdpe) qi(x,τ)=qides(x,τdes) qi(x,τ)=qippe(x,τppe)
Tg(x,0)=Tg0 Tg(x,τ)=Tgads(x,τads) Tg(x,τ)=Tgdpe(x,τdpe) Tg(x,τ)=Tgdes(x,τdes) Tg(x,τ)=Tgppe(x,τppe)
Ta(x,0)=Ta0 Ta(x,τ)=Taads(x,τads) Ta(x,τ)=Tadpe(x,τdpe) Ta(x,τ)=Tades(x,τdes) Ta(x,τ)=Tappe(x,τppe)
νg(x,0)=νg0 νg(x,τ)=νgads(x,τads) νg(x,τ)=νgdpe(x,τdpe) νg(x,τ)=νgdes(x,τdes) νg(x,τ)=νgppe(x,τppe)
P(x,0)=P0 P(x,0)=Pads(x,τads) P(x,0)=Pdpe(x,τdpe) P(x,0)=Pdes(x,τdes) P(x,0)=Pppe(x,τppe)
Padsin(0)=P0 Pdpe(0)=Pads(L,τads) Pdesin(0)=Pdpe(L,τdpe) Pppe(0)=Pdes(L,τdes) Padsin(0)=Pppe(L,τppe)
Table 6:

Boundary conditions of the PSA model.

Adsorption x = 0 Adsorption x = L DPEa x = 0 DPEa x = L Desorption x = 0 Desorption x = L PPEa x = 0 PPEa x = L
ci(0,τ)=ciin(τ) cix(L,τ)=0 cix(0,τ)=0 ci(L,τ)=ciads(L,τads) cix(0,τ)=0 ci(L,τ)=ciads(L,τ) ci(0,τ)=cidpe(L,τ) cix(L,τ)=0
Tg(0,τ)=Tgin(τ) Tgx(L,τ)=0 Tgx(0,τ)=0 Tg(L,τ)=Tgads(L,τads) Tgx(0,τ)=0 Tg(L,τ)=Tgads(τ) Tg(0,τ)=Tgdpe(L,τ) Tgx(L,τ)=0
νg(0,τ)=Gin(τ)εS νgx(L,τ)=0 νgx(0,τ)=0 νg(L,τ)=Geq(τ)εS νgx(0,τ)=0 νg(L,τ)=Gdes(τ)εS νg(0,τ)=Geq(τ)εS νgx(L,τ)=0
P(0,τ)=Padsin(τ) Px(L,τ)=0 Px(0,τ)=0 P(L,τ)=Pdpe(τ) Px(0,τ)=0 P(L,τ)=Pdesin(τ) P(0,τ)=Pppe(τ) Px(L,τ)=0
  1. aDepressurizing pressure equalization.

  2. bPressurizing pressure equalization.

Table 7:

Values of coefficients and adsorbent characteristics of the PSA model.

Description Expression
Specific heat capacity, Cg (J/mol K) 9971
Thermal conductivity coefficient, λg (W/m K) 0.129
Dynamic viscosity, μ g (10−5 Pa s) 1.07
Molar mass, Mg (10−3 kg/mol) 15.45
Diffusion coefficient in the gas phase, D L (10−5 m2/s) 7.46
Heat transfer coefficient, h (W/m2 K) 130
Zeolite adsorbent 13X
Density of the adsorbent, ρ a (kg/m3) 2140
Adsorbent porosity coefficient, ε (m3/m3) 0.39
Thermal conductivity coefficient of the adsorbent, λa (W/m K) 0.139
Sphericity coefficient of adsorbent particles, ψ 1
Input temperature in the adsorbent, Tain (K) 298
Characteristic energy of adsorption, E (J/mol) 12,902
Limiting adsorption volume, W0 (cm3/g) 0.262
Table 8:

Values of coefficients PSA model for gas mixture.

Description H2 CO2 CO
Component concentration, c (vol%) 48–68 27–47 5
Heat of sorption, ΔH (kJ/mol) 7.49 31.56 24.76
Mass transfer coefficient, k (1/s) 0.7 0.015 0.065
Affinity coefficient, β 0.11 2.20 1.08
Exponent DRA-equation, n 0.81 2 2
Critical molar volume, v* (cm3/mmol) 0.007 0.04 0.05
Saturation pressure, Ps (atm) 620.78 212.49 343.99

Nomenclature

Greek symbols

α

specific surface of adsorbent granules (1/m)

β

affinity coefficient

γ

adiabatic exponent

ΔH

heat of sorption (J/mol)

ΔP

pressure drop (atm)

ε

adsorbent porosity coefficient (m3/m3)

η

hydrogen recovery (%)

λ

thermal conductivity coefficient (W/m K)

μ g

dynamic viscosity (Pa s)

ν

iteration number

ν g

gas velocity (m/s)

Ξ

uncertainty region

ξ

uncertain variables

ρ a

adsorbent density (kg/m3)

ρ g

adsorbent molar density (mol/m3)

τ

time, duration (s)

ϕ

profit (K$)

ψ

sphericity coefficient of adsorbent particles

ω

weight coefficient

Latin symbols

C a

specific heat of the adsorbent (J/kg K)

C g

specific heat capacity (J/mol K)

c i

concentration of the ith component in the gas mixture (mol/m3)

c

total mole concentration (mol/m3)

D

inner diameter of the adsorber (m)

D L

diffusion coefficient in the gas phase (m2/s)

d

vector of design parameters

d p

diameter of adsorbent particles (mm)

E

characteristic adsorption energy (J/mol)

EC

energy cost ($/J)

F

function of the mathematical model

G

flow rate (L/min STP)

G out

unit capacity (L/min STP)

g

constraint function

h

heat transfer coefficient (W/m2 K)

I

capital costs ($)

K

kinetic pressure coefficient (1/s)

K v

valve capacity (l atm/min)

k

mass transfer coefficient (1/s)

L

height of the adsorbent bed (m)

LT

life time (year)

M g

molar mass (kg/mol)

N

quantity

n

exponent of Dubinin–Radushkevich–Astakhov equation

OC

operating costs ($/year)

P

pressure (atm)

P s

saturation pressure (atm)

P p

partial pressure (atm)

P/F

purge-feed ratio

PC

product cost ($/year)

p

product price ($/m3)

Q

optimization criterion

q i

concentration in the adsorbent (mol/m3)

qi*

equilibrium concentration in the adsorbent (mol/m3)

R

ideal gas constant (J/mol K)

S 1

set of approximation points

S 2

set of critical points

T

temperature (K)

u

vector of mode parameters

v *

critical molar volume (cm3/mmol)

W

theoretical volume of work (J/m3)

W 0

limiting adsorption volume (cm3/g)

x

spatial coordinate along the bed length (m)

ycss

output model variables in cyclic steady state

yi

mole fraction of the ith component in the bulk

Z

cost ($)

z

price ($)

Subscripts

a

adsorbent

ads

adsorption

col

adsorber

com

compressor

def

defined value

des

desorption

dpe

depressurizing pressure equalization

eq

equalization

g

gas mixture

i,j,k

serial number

in

inlet

out

oulet

ppe

pressurizing pressure equalization

vp

vacuum pump

Abbreviations

CSS

cyclic steady state

PSA

pressure swing adsorption

RMS

root-mean-square error

STP

standard temperature and pressure

References

1. Luberti, M, Ahn, H. Review of Polybed pressure swing adsorption for hydrogen purification Review of Polybed pressure swing adsorption for hydrogen purification. Int J Hydrogen Energy 2022;47:10911–33. https://doi.org/10.1016/j.ijhydene.2022.01.147.Suche in Google Scholar

2. Singla, S, Shetti, NP, Basu, S, Mondal, K, Aminabhavi, TM. Hydrogen production technologies-membrane based separation, storage and challenges. J Environ Manag 2022;302:113963. https://doi.org/10.1016/j.jenvman.2021.113963.Suche in Google Scholar PubMed

3. Abdeljaoued, A, Relvas, F, Mendes, A, Chanbani, M. Simulation and experimental results of a PSA process for production of hydrogen used in fuel cells. J Environ Chem Eng 2018;6:338–55. https://doi.org/10.1016/j.jece.2017.12.010.Suche in Google Scholar

4. Li, H, Liao, Z, Sun, J, Jiang, B, Wang, J, Yang, Y. Modelling and simulation of two-bed PSA process for separating H2 from methane steam reforming. Chin J Chem Eng 2019;27:1870–8. https://doi.org/10.1016/j.cjche.2018.11.022.Suche in Google Scholar

5. Ruthven, DM, Farooq, S, Knaebel, KS. Pressure swing adsorption. New York: VCH; 1994.Suche in Google Scholar

6. Li, C, Xiao, J, Pierre, B. Optimization of hydrogen purification performance of layered bed pressure swing adsorption. Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/J Wuhan Univ Technol (Transp Sci Eng) 2020;44:753–9. https://doi.org/10.3963/j.issn.2095-3844.2020.04.032.Suche in Google Scholar

7. Dehdari, L, Xiao, P, Li, KG, Singh, R, Webley, PA. Separation of hydrogen from methane by vacuum swing adsorption. Chem Eng J 2022;450:137911. https://doi.org/10.1016/j.cej.2022.137911.Suche in Google Scholar

8. Knaebel, SP, Ko, D, Biegler, LT. Simulation and optimization of a pressure swing adsorption system: Recovering hydrogen from methane. Adsorption 2005;11:615–20. https://doi.org/10.1007/s10450-005-5994-4.Suche in Google Scholar

9. Tavan, Y, Hosseini, SH, Olazar, M. A note on an integrated process of methane steam reforming in junction with pressure-swing adsorption to produce pure hydrogen: mathematical modeling. Ind Eng Chem Res 2015;54:12937–47. https://doi.org/10.1021/acs.iecr.5b01477.Suche in Google Scholar

10. Xiao, J, Li, R, Bénard, P, Chahine, R. Heat and mass transfer model of multicomponent adsorption system for hydrogen purification. Int J Hydrogen Energy 2015;40:4794–803. https://doi.org/10.1016/j.ijhydene.2015.02.042.Suche in Google Scholar

11. Han, ZY, Xing, R, Zhang, DH, Shen, YH, Fu, Q, Ding, ZY, et al.. Vacuum pressure swing adsorption system for N2/CH4 separation under uncertainty. Chem Eng Res Des 2019;142:245–56. https://doi.org/10.1016/j.cherd.2018.12.017.Suche in Google Scholar

12. Huang, Q, Malekian, A, Eic, M. Optimization of PSA process for producing enriched hydrogen from plasma reactor gas. Sep Purif Tech 2008;62:22–31. https://doi.org/10.1016/j.seppur.2007.12.017.Suche in Google Scholar

13. Tao, W, Ma, S, Xiao, J, Bénard, P, Chahine, R. Simulation and optimization for hydrogen purification performance of vacuum pressure swing adsorption. Energy Procedia 2019;158:1917–23. https://doi.org/10.1016/j.egypro.2019.01.441.Suche in Google Scholar

14. Delgado, JA, Gueda, VI, Uguina, MA, Sotelo, JL, Brea, P, Grande, CA. Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: evaluation of performance in pressure swing adsorption hydrogen purification by simulation. Ind Eng Chem Res 2014;53:15414–26. https://doi.org/10.1021/ie403744u.Suche in Google Scholar

15. Xiao, J, Li, C, Fang, L, Böwer, P, Wark, M, Bénard, P, et al.. Machine learning–based optimization for hydrogen purification performance of layered bed pressure swing adsorption. Int J Energy Res 2020;44:4475–92. https://doi.org/10.1002/er.5225.Suche in Google Scholar

16. Asgari, M, Anisi, H, Mohammadi, H. Designing a commercial scale pressure swing adsorber for hydrogen purification. Pet Coal 2014;56:552–61.Suche in Google Scholar

17. Papadias, D, Lee, S, Ahmed, S. Facilitating analysis of trace impurities in hydrogen: rnrichment based on the principles of pressure swing adsorption. Int J Hydrogen Energy 2012;37:14413–23. https://doi.org/10.1016/j.ijhydene.2012.07.057.Suche in Google Scholar

18. Ribeiro, AM, Grande, CA, Lopes, FV, Loureiro, JM, Rodrigues, AE. A parametric study of layered bed PSA for hydrogen purification. Chem Eng Sci 2008;63:5258–73. https://doi.org/10.1016/j.ces.2008.07.017.Suche in Google Scholar

19. Sun, K, Yang, T, Ma, S, Ye, F, Xiao, J. Hydrogen purification performance of pressure swing adsorption based on Cu-BTC/zeolite 5A layered bed. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2022;37:815–22. https://doi.org/10.1007/s11595-022-2601-4.Suche in Google Scholar

20. Asgari, M, Streb, A, van der Spek, M, Queen, W, Mazzotti, M. Synergistic material and process development: application of a metal-organic framework, Cu-TDPAT, in single-cycle hydrogen purification and CO2 capture from synthesis gas. Chem Eng J 2021;414:128778. https://doi.org/10.1016/j.cej.2021.128778.Suche in Google Scholar

21. Al-Naddaf, Q, Rownaghi, AA, Rezaei, F. Multicomponent adsorptive separation of CO2, CO, CH4, N2, and H2 over core-shell zeolite-5A@ MOF-74 composite adsorbents. Chem Eng J 2020;384:123251. https://doi.org/10.1016/j.cej.2019.123251.Suche in Google Scholar

22. Silva, B, Solomon, I, Ribeiro, A, Lee, U, Hwang, Y, Chang, J, et al.. H2 purification by pressure swing adsorption using CuBTC. Sep Purif Tech 2013;118:744–56. https://doi.org/10.1016/j.seppur.2013.08.024.Suche in Google Scholar

23. Akulinin, EI, Golubyatnikov, OO, Dvoretsky, SI. Pressure swing adsorption for recovery hydrogen, oxygen and nitrogen from gas mixtures: mathematical modeling, optimization and units design. ChemChemTech 2021;64:8–29. https://doi.org/10.6060/IVKKT.20216411.6459.Suche in Google Scholar

24. Shi, W, Tian, C, Ding, Z, Han, Z, Zhang, D. Review on simulation, optimization and control of pressure swing adsorption. Gaoxiao Huaxue Gongcheng Xuebao 2018;32:8–15. https://doi.org/10.3969/j.issn.1003-9015.2018.01.002.Suche in Google Scholar

25. Biegler, LT, Jiang, L, Fox, VG. Recent advances in simulation and optimal design of pressure swing adsorption systems. Sep Purif Rev 2005;33:1–39. https://doi.org/10.1081/SPM-120039562.Suche in Google Scholar

26. Capra, F, Gazzani, M, Joss, L, Mazzotti, M, Martelli, EMO-MCS. A derivative-free algorithm for the multiobjective optimization of adsorption processes. Ind Eng Chem Res 2018;57:9977–93. https://doi.org/10.1021/acs.iecr.8b00207.Suche in Google Scholar

27. Ohs, B, Falkenberg, M, Wessling, M. Optimizing hybrid membrane-pressure swing adsorption processes for biogenic hydrogen recovery. Chem Eng J 2019;364:452–61. https://doi.org/10.1016/j.cej.2019.01.136.Suche in Google Scholar

28. Jiang, L, Fox, VG, Biegler, LT. Simulation and optimal design of multiple bed pressure swing adsorption systems. AIChE J 2004;50:2904–17. https://doi.org/10.1002/aic.10223.Suche in Google Scholar

29. Streb, A, Mazzotti, M. Performance limits of neural networks for optimizing an adsorption process for hydrogen purification and CO2 capture. Comput Chem Eng 2022;166:107974. https://doi.org/10.1016/j.compchemeng.2022.107974.Suche in Google Scholar

30. Yu, X, Shen, Y, Guan, Z, Zhang, D, Tang, Z, Li, W. Multi-objective optimization of ANN-based PSA model for hydrogen purification from steam-methane reforming gas. Int J Hydrogen Energy 2021;46:11740–55. https://doi.org/10.1016/j.ijhydene.2021.01.107.Suche in Google Scholar

31. Ye, F, Ma, S, Tong, L, Xiao, J, Bénard, P, Chahine, R. Artificial neural network based optimization for hydrogen purification performance of pressure swing adsorption. Int J Hydrogen Energy 2019;44:5334–44. https://doi.org/10.1016/j.ijhydene.2018.08.104.Suche in Google Scholar

32. Ma, S, Tong, L, Ye, F, Xiao, J, Benard, P, Chahine, R. Hydrogen purification layered bed optimization based on artificial neural network prediction of breakthrough curves. Int J Hydrogen Energy 2019;44:5324–33. https://doi.org/10.1016/j.ijhydene.2018.12.142.Suche in Google Scholar

33. Zhang, N, Bénard, P, Chahine, R, Yang, T, Xiao, J. Optimization of pressure swing adsorption for hydrogen purification based on Box-Behnken design method. Int J Hydrogen Energy 2021;46:5403–17. https://doi.org/10.1016/j.ijhydene.2020.11.045.Suche in Google Scholar

34. Martínez García, M, Rumbo Morales, JY, Torres, GO, Rodríguez Paredes, SA, Vázquez Reyes, S, Sorcia Vázquez, FDJ, et al.. Simulation and state Feedback control of a pressure swing adsorption process to produce hydrogen. Mathematics 2022;10:1762. https://doi.org/10.3390/math10101762.Suche in Google Scholar

35. Urich, MD, Vemula, RR, Kothare, MV. Multivariable model predictive control of a novel rapid pressure swing adsorption system. AIChE J 2018;64:1234–45. https://doi.org/10.1002/aic.16011.Suche in Google Scholar

36. Khajuria, H, Pistikopoulos, EN. Optimization and control of pressure swing adsorption processes under uncertainty. AIChE J 2013;59:120–31. https://doi.org/10.1002/aic.13783.Suche in Google Scholar

37. Grossmann, IE, Apap, RM, Calfa, BA, Garcia-Herreros, P, Zhang, Q. Mathematical programming techniques for optimization under uncertainty and their application in process systems engineering. Theor Found Chem Eng 2017;51:893–909. https://doi.org/10.1134/S0040579517060057.Suche in Google Scholar

38. Ostrovsky, GM, Ziyatdinov, NN, Lapteva, TV, Silvestrova, AS, Nguyen, QT. Optimization of chemical process with joint chance constraints. Ind Eng Chem Res 2017;56:3309–31. https://doi.org/10.1021/acs.iecr.6b02683.Suche in Google Scholar

39. Yang, SI, Choi, DY, Jang, SC, Kim, SH, Choi, DK. Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas. Adsorption 2008;14:583–90. https://doi.org/10.1007/s10450-008-9133-x.Suche in Google Scholar

40. Golubyatnikov, O, Akulinin, E, Dvoretsky, S, Dvoretsky, D. To the problem of forming the equation system for pressure swing adsorption mathematical model. Chem Prod Process Model 2022;17:681–99. https://doi.org/10.1515/cppm-2021-0008.Suche in Google Scholar

41. Da Silva, FA, Silva, JA, Rodrigues, AE. A general package for the simulation of cyclic adsorption processes. Adsorption 1999;5:229–44. https://doi.org/10.1023/A:1008974908427.10.1023/A:1008974908427Suche in Google Scholar

42. Santos, JC. Study of New Adsorbents and Operation Cycles for Medical PSA Units. Porto: Departamento de Engenharia Química Faculdade de Engenharia da Universidade do Porto; 2005.Suche in Google Scholar

43. Boukouvala, F, Hasan, MM, Floudas, CA. Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption. J Global Optim 2017;67:3–42. https://doi.org/10.1007/s10898-015-0376-2.Suche in Google Scholar

44. Moon, DK, Lee, DG, Lee, CH. H2 pressure swing adsorption for high pressure syngas from an integrated gasification combined cycle with a carbon capture process. Appl Energy 2016;183:760–74. https://doi.org/10.1016/j.apenergy.2016.09.038.Suche in Google Scholar

45. Liu, B, Yu, X, Shi, W, Shen, Y, Zhang, D, Tang, Z. Two-stage VSA/PSA for capturing carbon dioxide (CO2) and producing hydrogen (H2) from steam-methane reforming gas. Int J Hydrogen Energy 2020;45:24870–82. https://doi.org/10.1016/j.ijhydene.2020.06.264.Suche in Google Scholar

Received: 2022-12-12
Accepted: 2023-04-20
Published Online: 2023-05-04

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2022-0081/html?lang=de
Button zum nach oben scrollen