Abstract
The search for sustainable ideas has gained prominence in recent decades at all levels of society since it has become imperative an economic, social, and environmental development in an integrated manner. In this context, biorefineries are currently present as the technology that best covers all these parameters, as they add the benefits of waste reuse, energy cogeneration, and fossil fuel substitution. Thus, the study of the various applicable biological matrices and exploring the technical capabilities of these processes become highly attractive. Thermodynamic modeling acts in this scenario as a fundamental tool for phase behavior predictions in process modeling, design, and optimization. Thus, this work aimed to systematize, using the PRISMA statement for systematic reviews, the information published between 2010 and 2020 on phase equilibria modeling in systems related to biorefineries to organize what is already known about the subject. As a result, 236 papers were categorized in terms of the year, country, type of phase equilibria, and thermodynamic model used. Also, the phase behavior predictions of different thermodynamic models under the same process conditions were qualitatively compared, establishing PC-SAFT as the model that best represents the great diversity of interest systems for biorefineries in a wide range of conditions.
Funding source: CNPq
Award Identifier / Grant number: 310038/2020-0
Funding source: Fundação Araucária
Award Identifier / Grant number: 004/2019
Funding source: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Award Identifier / Grant number: 001
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Authors thank the following Brazilian Agencies: CNPq (Grant Number 310038/2020-0) and Fundação Araucária (Grant number 004/2019) for the financial support and scholarships. J.T. thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Sadhukhan, J, Martinez-Hernandez, E, Ng, KS. Biorefinery value chain creation. Chem Eng Res Des 2016;107:1–3. https://doi.org/10.1016/j.cherd.2016.02.026.Suche in Google Scholar
2. González Prieto, M, Sánchez, FA, Pereda, S. Thermodynamic model for biomass processing in pressure intensified technologies. J Supercrit Fluids 2015;96:53–67. https://doi.org/10.1016/j.supflu.2014.08.024.Suche in Google Scholar
3. Abutaqiya, MIL. Advances in thermodynamic modeling of nonpolar hydrocarbons and asphaltene precipitation in crude oils [Doctor of Philosophy]. Houston, TX: Rice University; 2019.Suche in Google Scholar
4. Gek, C, Kanna, Y, Kee, M, Teong, K. Algae biorefinery: review on a broad spectrum of downstream processes and products. Bioresour Technol 2019;292:121964. https://doi.org/10.1016/j.biortech.2019.121964.Suche in Google Scholar PubMed
5. Ponnusamy, VK, Nguyen, DD, Dharmaraja, J, Shobana, S, Banu, R, Saratale, RG, et al.. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour Technol 2018;271:462–72. https://doi.org/10.1016/j.biortech.2018.09.070.Suche in Google Scholar PubMed
6. Ruiz, A, Rodrı, RM, Fernandes, BD, Vicente, A, Teixeira, A. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 2013;21:35–51.10.1016/j.rser.2012.11.069Suche in Google Scholar
7. Mohan, SV, Nikhil, GN, Chiranjeevi, P, Reddy, CN, Rohit, MV, Kumar, AN. Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol 2016;215:2–12. https://doi.org/10.1016/j.biortech.2016.03.130.Suche in Google Scholar PubMed
8. Atashbar, NZ, Labadie, N, Prins, C. Modeling and optimization of biomass supply chains: a review and a critical look. IFAC-PapersOnLine 2016;49:604–15. https://doi.org/10.1016/j.ifacol.2016.07.742.Suche in Google Scholar
9. Muench, S, Guenther, E. A systematic review of bioenergy life cycle assessments. Appl Energy 2013;112:257–73. https://doi.org/10.1016/j.apenergy.2013.06.001.Suche in Google Scholar
10. Gottumukkala, LD, Haigh, K, Collard, F, Rensburg, EV, Görgens, J. Opportunities and prospects of biorefinery-based valorisation of pulp and paper sludge. Bioresour Technol 2016;6:757–63. https://doi.org/10.1016/j.biortech.2016.04.015.Suche in Google Scholar PubMed
11. Almeida, JRM, Fávaro, LCL, Quirino, BF. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 2012;5:48.10.1186/1754-6834-5-48Suche in Google Scholar PubMed PubMed Central
12. Prausnitz, JM. Thermodynamic and transport properties of coal liquids. Fluid Phase Equil 1987;35:316–8.10.1016/0378-3812(87)80022-5Suche in Google Scholar
13. Smith, JM, Van Ness, HC, Abbot, MM. Introdução à termodinâmica da engenharia química; 2007.Suche in Google Scholar
14. Afonso, C. Termodinâmica para Engenharia [Internet]; 2012. Available from: https://books.google.com/books?id=YnyEeg0-EXQC&pgis=1.Suche in Google Scholar
15. Wilson, GM. Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. J Am Chem Soc 1964;86:127–30.10.1021/ja01056a002Suche in Google Scholar
16. Renon, H, Prausnitz, JM. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J 1968;14:135.10.1002/aic.690140124Suche in Google Scholar
17. Abrams, DS, Prausnitz, JM. Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J 1975;21:116–28.10.1002/aic.690210115Suche in Google Scholar
18. Gmehling, J, Constantinescu, D, Schmid, B. Group contribution methods for phase equilibrium calculations. Ann Rev Chem Biomol Eng 2015;6:267–92.10.1146/annurev-chembioeng-061114-123424Suche in Google Scholar
19. Wilson, GM, Deal, CH. Activity coefficients and molecular structure: activity coefficients in changing environments-solutions of groups. Ind Eng Chem Fundam 1962;1:20–3.10.1021/i160001a003Suche in Google Scholar
20. Fredenslund, A, Jones, RL, Prausnitz, JM. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J 1975;21:1086–99.10.1002/aic.690210607Suche in Google Scholar
21. Wertheim, MS. Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. J Stat Phys 1984;35:35–47.10.1007/BF01017363Suche in Google Scholar
22. Wertheim, MS. Fluids with highly directional attractive forces. I. Statistical thermodynamics. J Stat Phys 1984;35:19–34.10.1007/BF01017362Suche in Google Scholar
23. Chapman, WG, Gubbins, KE, Jackson, G, Radosz, M. SAFT: equation-of-state solution model for associating fluids. Fluid Phase Equil 1989;52:31–8.10.1016/0378-3812(89)80308-5Suche in Google Scholar
24. Kontogeorgis, GM, Voutsas, EC, Yakoumis, IV, Tassios, DP. An equation of state for associating fluids. Ind Eng Chem Res 1996;35:4310–8.10.1021/ie9600203Suche in Google Scholar
25. Gros, HP, Bottini, S, Brignole, EA. A group contribution equation of state for associating mixtures. Fluid Phase Equil 1996;116:537–44.10.1016/0378-3812(95)02928-1Suche in Google Scholar
26. Skjold-Jørgensen, S. Group contribution equation of state (GC-EOS): a predictive method for phase equilibrium computations over wide ranges of temperature and pressures up to 30 MPa. Ind Eng Chem Res 1988;27:110–8.10.1021/ie00073a021Suche in Google Scholar
27. Ungerer, P, Nieto-Draghi, C, Rousseau, B, Ahunbay, G, Lachet, V. Molecular simulation of the thermophysical properties of fluids: from understanding toward quantitative predictions. J Mol Liq 2007;134:71–89.10.1016/j.molliq.2006.12.019Suche in Google Scholar
28. Eckert, F, Klamt, A. Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE J 2002;48:369–85.10.1002/aic.690480220Suche in Google Scholar
29. Panagiotopoulos, AZ. Molecular simulation of phase equilibria: simple, ionic and polymeric fluids. Fluid Phase Equil 1992;76:97–112.10.1016/0378-3812(92)85080-RSuche in Google Scholar
30. Klamt, A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 1995;99:2224–35.10.1021/j100007a062Suche in Google Scholar
31. Klamt, A, Eckert, F, Arlt, W. COSMO-RS: An alternative to simulation for calculating thermodynamic properties of liquid mixtures. Ann Rev Chem Biomol Eng 2010;1:101–22.10.1146/annurev-chembioeng-073009-100903Suche in Google Scholar PubMed
32. Lin, ST, Sandler, SI. A priori phase equilibrium prediction from a segment contribution solvation model. Ind Eng Chem Res 2002;41:899–913.10.1021/ie001047wSuche in Google Scholar
33. Fingerhut, R, Chen, WL, Schedemann, A, Cordes, W, Rarey, J, Hsieh, CM, et al.. Comprehensive assessment of COSMO-SAC models for predictions of fluid-phase equilibria. Ind Eng Chem Res 2017;56:9868–84.10.1021/acs.iecr.7b01360Suche in Google Scholar
34. Liberati, A, Altman, DG, Tetzlaff, J, Mulrow, C, Gøtzsche, PC, Ioannidis, JPA, et al.. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009;6.10.1371/journal.pmed.1000100Suche in Google Scholar PubMed PubMed Central
35. Polishuk, I, Sidik, Y. Predicting phase behavior in aqueous systems without fitting binary parameters I: CP-PC-SAFT EOS, aromatic compounds. AIChE J 2017;63:4124–35.10.1002/aic.15715Suche in Google Scholar
36. Lubarsky, H, Polishuk, I, Nguyenhuynh, D. Implementation of GC-PPC-SAFT and CP-PC-SAFT for predicting thermodynamic properties of mixtures of weakly- and non-associated oxygenated compounds. J Supercrit Fluids 2016;115:65–78. https://doi.org/10.1016/j.supflu.2016.04.013.Suche in Google Scholar
37. Polishuk, I. Implementation of CP-PC-SAFT for predicting thermodynamic properties and gas solubility in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids without fitting binary parameters. Ind Eng Chem Res 2017;56:7845–57.10.1021/acs.iecr.7b01846Suche in Google Scholar
38. Polishuk, I, Garrido, JM. Comparison of SAFT-VR-Mie and CP-PC-SAFT in predicting phase behavior of associating systems I. Ammonia–water, methanol, ethanol and hydrazine. J Mol Liq 2018;265:639–53. https://doi.org/10.1016/j.molliq.2018.05.112.Suche in Google Scholar
39. Polishuk, I, Cea-Klapp, E. Comparison of SAFT-VR-Mie and CP-PC-SAFT in estimating the phase behavior of acetone + n-alkane systems. Ind Eng Chem Res 2020;59:21567–78.10.1021/acs.iecr.0c04435Suche in Google Scholar
40. Thermodynamics, JC, Voll, FAP, Kanda, LRS, Cardozo, L, Corazza, ML. (Liquid + liquid) equilibrium for the system (hydrolyzed palm oil + ethanol + water) for diacylglycerol enrichment. J Chem Thermodyn 2013;58:1–7. https://doi.org/10.1016/j.jct.2012.10.009.Suche in Google Scholar
41. Kanda, LR, Augusto, F, Voll, P, Corazza, ML. LLE for the systems ethyl palmitate (palmitic acid)(1) + ethanol (2)+ glycerol (water)(3). Fluid Phase Equil 2013;354:147–55. https://doi.org/10.1016/j.fluid.2013.06.027.Suche in Google Scholar
42. Paes, FC, Kanda, LRS, Voll, FAP, Corazza, ML. Liquid-liquid equilibrium of ternary systems comprising ethyl valerate (1), water (2), ethanol (3) and valeric acid (4). J Chem Thermodyn 2017;111:185–90. https://doi.org/10.1016/j.jct.2017.03.030.Suche in Google Scholar
43. Branco, L. Biocombustíveis: vantagens E desafios. Rev Eletrônica Energ 2014;3:16–33.Suche in Google Scholar
44. Mandal, S, Jana, AK. A comparative performance of thermodynamic models for a quaternary (HI–H2O–I2–H2) HIx system: experimental verification. Int J Hydrogen Energy 2016;41:13350–8. https://doi.org/10.1016/j.ijhydene.2016.05.030.Suche in Google Scholar
45. Zerpa, S, Satyro, M, Clarke, MA. A short note on the use of an equation of state (EOS) based approach to modelling the thermodynamics of biodiesel systems. Fuel Process Technol 2014;121:70–5. https://doi.org/10.1016/j.fuproc.2014.01.010.Suche in Google Scholar
46. Mejía, A, Segura, H, Cartes, M. Experimental determination and theoretical prediction of the vapor-liquid equilibrium and interfacial tensions of the system methyl-tert-butyl ether + 2,5-dimethylfuran. Fuel 2014;116:183–90.10.1016/j.fuel.2013.07.107Suche in Google Scholar
47. Sakdasri, W, Sawangkeaw, R, Medina-Gonzalez, Y, Camy, S, Condoret, JS, Ngamprasertsith, S. Experimental study and modeling of phase equilibrium of the methanol-tripalmitin system: application to palm oil transesterification with supercritical methanol. Ind Eng Chem Res 2016;55:5190–9.10.1021/acs.iecr.5b04588Suche in Google Scholar
48. Freitas, ACD, Cunico, LP, Aznar, M, Guirardello, R. Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state. Braz J Chem Eng 2013;30:63–73.10.1590/S0104-66322013000100008Suche in Google Scholar
49. Pinto, LF, Da Silva, DIS, Rosa Da Silva, F, Ramos, LP, Ndiaye, PM, Corazza, ML. Phase equilibrium data and thermodynamic modeling of the system (CO2 + biodiesel + methanol) at high pressures. J Chem Thermodyn 2012;44:57–65. https://doi.org/10.1016/j.jct.2011.07.019.Suche in Google Scholar
50. Giacomin Junior, WR, Capeletto, CA, Voll, FAP, Corazza, ML. Phase equilibrium measurements and thermodynamic modeling of the systems (CO2 + ethyl levulinate) and (CO2 + levulinic acid). J Chem Eng Data 2019;64:2011–7.10.1021/acs.jced.8b01023Suche in Google Scholar
51. Veiga, BA, dos Santos, JTF, de Lima Luz Junior, LF, Corazza, ML. Phase equilibrium measurements and thermodynamic modelling for the systems involving valeric acid, ethanol, ethyl valerate and water plus CO2. J Chem Thermodyn 2017;112:240–8. https://linkinghub.elsevier.com/retrieve/pii/S002196141730143X.10.1016/j.jct.2017.05.011Suche in Google Scholar
52. Morais, ARC, Da Costa Lopes, AM, Bogel-Lukasik, R. The phase equilibrium phenomenon in model hydrogenation of oleic acid. Monatshefte fur Chemie 2014;145:1555–60.10.1007/s00706-014-1268-8Suche in Google Scholar
53. Juntarachat, N, Privat, R, Coniglio, L, Jaubert, JN. Development of a predictive equation of state for CO2+ ethyl ester mixtures based on critical points measurements. J Chem Eng Data 2014;59:3205–19.10.1021/je5002494Suche in Google Scholar
54. Qian, JW, Privat, R, Jaubert, JN. Predicting the phase equilibria, critical phenomena, and mixing enthalpies of binary aqueous systems containing alkanes, cycloalkanes, aromatics, alkenes, and gases (N2, CO2, H2S, H2) with the PPR78 equation of state. Ind Eng Chem Res 2013;52:16457–90.10.1021/ie402541hSuche in Google Scholar
55. Esina, Z, Esina, Z, Miroshnikov, A, Miroshnikov, A, Korchuganova, M, Korchuganova, M. Liquid-solid and liquid-vapor phase equilibrium in secondary alcohol-n-alkane system. Sci Evol 2017;2:33–9.10.21603/2500-1418-2017-2-2-33-39Suche in Google Scholar
56. Knorr, T, Aust, E, Jacob, KH. Calculation of vapor-liquid equilibrium data of binary mixtures using vapor pressure data. Chem Eng Technol 2010;33:2089–94.10.1002/ceat.201000356Suche in Google Scholar
57. Fu, C, Song, W, Yi, C, Xie, S. Creating efficient novel aqueous two-phase systems: salting-out effect and high solubility of salt. Fluid Phase Equil 2019;490:77–85. https://doi.org/10.1016/j.fluid.2019.03.002.Suche in Google Scholar
58. Silva, C, Soh, L, Barberio, A, Zimmerman, J, Seider, WD. Phase equilibria of triolein to biodiesel reactor systems. Fluid Phase Equil 2016;409:171–92. https://doi.org/10.1016/j.fluid.2015.09.049.Suche in Google Scholar
59. Yokozeki, A, Shiflett, MB. Water solubility in ionic liquids and application to absorption cycles. Ind Eng Chem Res 2010;49:9496–503.10.1021/ie1011432Suche in Google Scholar
60. Sima, S, Secuianu, C, Feroiu, V, Geană, D. New high-pressures vapor-liquid equilibrium data for the carbon dioxide + 2-methyl-1-propanol (isobutanol) binary system. Cent Eur J Chem 2014;12:953–61.10.2478/s11532-013-0394-1Suche in Google Scholar
61. Shah, MR, Yadav, GD. Prediction of liquid-liquid equilibria for biofuel applications by quantum chemical calculations using the Cosmo-SAC method. Ind Eng Chem Res 2011;50:13066–75.10.1021/ie201454mSuche in Google Scholar
62. Uusi-Kyyny, P, Qureshi, MS, Pokki, JP, Alopaeus, V, Richon, D. 110th anniversary: critical properties and high temperature vapor pressures for furan, 2-methylfuran, 2-Methoxy-2-methylpropane, 2-Ethoxy-2-methylbutane, n-hexane, and ethanol and bubble points of mixtures with a new apparatus. Ind Eng Chem Res 2019;58:22350–62.10.1021/acs.iecr.9b02912Suche in Google Scholar
63. Zheng, K, Yang, R, Wu, H, Wang, G, Yang, Y, Li, Y. Application of the perturbed-chain SAFT to phase equilibria in the Fischer-Tropsch synthesis. Ind Eng Chem Res 2019;58:8387–400.10.1021/acs.iecr.9b00174Suche in Google Scholar
64. Coniglio, L, Coutinho, JAP, Clavier, JY, Jolibert, F, Jose, J, Mokbel, I, et al.. Biodiesel via supercritical ethanolysis within a global analysis “feedstocks-conversion-engine” for a sustainable fuel alternative. Prog Energy Combust Sci 2014;43:1–35. https://doi.org/10.1016/j.pecs.2014.03.001.Suche in Google Scholar
65. Monteiro, MF, Moura-Neto, MH, Pereira, CG, Chiavone-Filho, O. Description of phase equilibrium and volumetric properties for CO2+ water and CO2+ ethanol using the CPA equation of state. J Supercrit Fluids 2020;161:104841. https://doi.org/10.1016/j.supflu.2020.104841.Suche in Google Scholar
66. Guevara, MA, Guevara, FA, Belalcazar, LC. Experimental data and new binary interaction parameters for ethanol-water VLE at low pressures using NRTL and UNIQUAC. Tecciencia 2018;13:17–26.10.18180/tecciencia.2018.24.3Suche in Google Scholar
67. Wu, H, Zheng, K, Wang, G, Yang, Y, Li, Y. Modeling of gas solubility in hydrocarbons using the perturbed-chain statistical associating fluid theory equation of state. Ind Eng Chem Res 2019;58:12347–60.10.1021/acs.iecr.9b01383Suche in Google Scholar
68. Cunico, LP, Guirardello, R. Modeling of phase and chemical equilibria for systems involved in biodiesel production. Chem Eng Trans 2015;43:1855–60.Suche in Google Scholar
69. Sima, S, Secuianu, C, Feroiu, V, Geană, D. New high-pressures vapor-liquid equilibrium data for the carbon dioxide + 2-methyl-2-propanol binary system. Cent Eur J Chem 2014;12:893–900.10.2478/s11532-013-0392-3Suche in Google Scholar
70. Novella, A, Camy, S, Condoret, JS. Fractionation of a dilute acetic acid aqueous mixture in a continuous countercurrent packed column using supercritical CO2: experiments and simulation of external extract reflux. J Supercrit Fluids 2020;157:104680. https://doi.org/10.1016/j.supflu.2019.104680.Suche in Google Scholar
71. Pokki, JP, Lê, HQ, Uusi-Kyyny, P, Sixta, H, Alopaeus, V. Isobaric vapor-liquid equilibrium of furfural + γ-valerolactone at 30 kPa and isothermal liquid-liquid equilibrium of carbon dioxide + γ-valerolactone + water at 298 K. J Chem Eng Data 2018;63:4381–91.10.1021/acs.jced.8b00451Suche in Google Scholar
72. Mavalal, S, Moodley, K. Isothermal vapour-liquid equilibrium measurements for the water + butane-1,4-diol/butane-2,3-diol system within 353.1–373.2 K. Fluid Phase Equil 2020;512:112518. https://doi.org/10.1016/j.fluid.2020.112518.Suche in Google Scholar
73. Bessa, LCBA, Robustillo, MD, de Meirelles, AJ, de Alcântara Pessôa Filho, P. (Solid + liquid) equilibrium of binary mixtures containing ethyl esters and p-xylene by differential scanning calorimetry. J Therm Anal Calorim 2019;137:2017–28.10.1007/s10973-019-08085-zSuche in Google Scholar
74. Bessa, LCBA, Robustillo, MD, Marques, BC, Tadini, CC, de Alcântara Pessôa Filho, P. Experimental determination and thermodynamic modeling of solid-liquid equilibrium of binary systems containing representative compounds of biodiesel and fossil fuels: ethyl esters and n-dodecane. Fuel 2019;237:1132–40. https://doi.org/10.1016/j.fuel.2018.10.080.Suche in Google Scholar
75. Robustillo, MD, Barbosa, DF, de Meirelles, AJ, de Alcântara Pessôa Filho, P. Solid-liquid equilibrium in ternary mixtures of ethyl laurate, ethyl palmitate and ethyl myristate. Fluid Phase Equil 2014;361:188–99. https://doi.org/10.1016/j.fluid.2013.10.024.Suche in Google Scholar
76. Robustillo, MD, Barbosa, DF, de Meirelles, AJ, de Alcântara Pessôa Filho, P. Solid-liquid equilibrium of binary and ternary mixtures containing ethyl oleate, ethyl myristate and ethyl stearate. Fluid Phase Equil 2014;370:85–94. https://doi.org/10.1016/j.fluid.2014.03.001.Suche in Google Scholar
77. Zarei, S, Abdolrahimi, S, Pazuki, G. Thermophysical characterization of sorbitol and 1–ethyl–3–methylimidazolium acetate mixtures. Fluid Phase Equil 2019;497:140–50. https://doi.org/10.1016/j.fluid.2019.06.006.Suche in Google Scholar
78. Reynel-Ávila, HE, Bonilla-Petriciolet, A, Tapia-Picazo, JC. An artificial neural network-based NRTL model for simulating liquid-liquid equilibria of systems present in biofuels production. Fluid Phase Equil 2019;483:153–64.10.1016/j.fluid.2018.11.009Suche in Google Scholar
79. Moreau, A, Segovia, JJ, Bermejo, MD, Martín, MC. Vapor-liquid equilibria and excess enthalpies of the binary systems 1-pentanol or 2-pentanol and 1-hexene or 1,2,4-trimethylbenzene for the development of biofuels. Fluid Phase Equil 2018;460:85–94.10.1016/j.fluid.2017.12.031Suche in Google Scholar
80. Li, S, Huang, X, Huang, Q, Guo, T, Yun, S, Ban, C, et al.. Vapor-liquid equilibrium in the binary and ternary systems containing ethyl propionate, ethanol and alkane at 101.3 kPa. Fluid Phase Equil 2018;476:103–11. https://doi.org/10.1016/j.fluid.2018.07.013.Suche in Google Scholar
81. Galeotti, N, Burger, J, Hasse, H. Vapor-liquid equilibrium in the ternary systems acetic acid + water + (xylose or glucose). Fluid Phase Equil 2018;473:323–9. https://doi.org/10.1016/j.fluid.2018.06.011.Suche in Google Scholar
82. Garcia-Cano, J, Gomis, V, Font, A, Calemma, V, Gambarotta, EF. Vapor-liquid equilibrium of 3-ethoxy-1,2-propanediol + water/ethanol/diethyl ether/glycerol/1,2-propanediol at different pressures. Fluid Phase Equil 2020;512:112519. https://doi.org/10.1016/j.fluid.2020.112519.Suche in Google Scholar
83. Duran, JA, Córdoba, FP, Gil, ID, Rodríguez, G, Orjuela, A. Vapor-liquid equilibrium of the ethanol+3-methyl-1-butanol system at 50.66, 101.33 and 151.99kPa. Fluid Phase Equil 2013;338:128–34. https://doi.org/10.1016/j.fluid.2012.11.004.Suche in Google Scholar
84. Zhang, L, Yang, B, Zhang, W. Vapor-liquid equilibrium of water + ethanol + glycerol: experimental measurement and modeling for ethanol dehydration by extractive distillation. J Chem Eng Data 2015;60:1892–9.10.1021/acs.jced.5b00116Suche in Google Scholar
85. Mejía, A, Segura, H, Cartes, M, Coutinho, JAP. Vapor-liquid equilibrium, densities, and interfacial tensions of the system hexane + 2,5-dimethylfuran. J Chem Eng Data 2012;57:2681–8.10.1021/je300631sSuche in Google Scholar
86. Moreau, A, Martín, MC, Aguilar, F, Segovia, JJ. Vapour-liquid equilibria and excess enthalpies of the binary mixtures 1-pentanol with 2,2,4-trimethylpentane or n-heptane. Fluid Phase Equil 2013;338:95–9. https://doi.org/10.1016/j.fluid.2012.11.005.Suche in Google Scholar
87. Moreau, A, Segovia, JJ, Villamañán, MA, Martín, MC. Vapour-liquid equilibria of the ternary mixture (1-pentanol+2,2,4-trimethylpentane+heptane) and the binary mixture (2,2,4-trimethylpentane+heptane) at T=313.15K for the characterization of second generation biofuels. Fluid Phase Equil 2015;405:101–6. https://doi.org/10.1016/j.fluid.2015.07.049.Suche in Google Scholar
88. Pla-Franco, J, Lladosa, E, Loras, S, Montón, JB. Azeotropic distillation for 1-propanol dehydration with diisopropyl ether as entrainer: equilibrium data and process simulation. Separ Purif Technol 2019;212:692–8. https://doi.org/10.1016/j.seppur.2018.11.082.Suche in Google Scholar
89. Rabari, D, Banerjee, T. Biobutanol and n-propanol recovery using a low density phosphonium based ionic liquid at T=298.15K and p=1atm. Fluid Phase Equil 2013;355:26–33. https://doi.org/10.1016/j.fluid.2013.06.047.Suche in Google Scholar
90. Moreau, A, Segovia, JJ, Bermejo, MD, Martín, MC. Characterizing second generation biofuels: excess enthalpies and vapour-liquid equilibria of the binary mixtures containing 1-pentanol or 2-pentanol and n-hexane. Fluid Phase Equil 2016;425:177–82.10.1016/j.fluid.2016.05.031Suche in Google Scholar
91. Song, Y, Wang, R, Liu, R, Du, Y, Luo, F, Yan, H, et al.. Dehydration of 1-butanol with a deep eutectic solvent by liquid-liquid extraction. Ind Eng Chem Res 2020;59:846–55.10.1021/acs.iecr.9b04371Suche in Google Scholar
92. Ginting, RR, Mustain, A, Wibawa, G. Determination of ternary liquid-liquid equilibria for dimethyl carbonate + 2-methyl-1-propanol or 2-methyl-2-propanol + water systems at T = 303.15 and 313.15 K. J Chem Eng Data 2017;62:463–8.10.1021/acs.jced.6b00763Suche in Google Scholar
93. Altway, S, Pujar, SC, de Haan, AB. Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5-hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride. J Chem Thermodyn 2019;132:257–67. https://doi.org/10.1016/j.jct.2019.01.001.Suche in Google Scholar
94. Wannachod, T, Hronec, M, Soták, T, Fulajtárová, K, Pancharoen, U, Arpornwichanop, A. Effects of salt on the LLE and tie-line data for furfuryl alcohol – N-butanol-water at T = 298.15 K. J Mol Liq 2016;218:50–8.10.1016/j.molliq.2016.02.027Suche in Google Scholar
95. Bharti, A, Banerjee, T. Enhancement of bio-oil derived chemicals in aqueous phase using ionic liquids: experimental and COSMO-SAC predictions using a modified hydrogen bonding expression. Fluid Phase Equil 2015;400:27–37. https://doi.org/10.1016/j.fluid.2015.04.029.Suche in Google Scholar
96. Auger, E, Coquelet, C, Valtz, A, Nala, M, Naidoo, P, Ramjugernath, D. Equilibrium data and GC-PC SAFT predictions for furanic extraction. Fluid Phase Equil 2016;430:57–66. https://doi.org/10.1016/j.fluid.2016.09.019.Suche in Google Scholar
97. Park, SJ, Moon, JK, Um, BH. Evaluation of the efficiency of solvent systems to remove acetic acid derived from pre-pulping extraction. J Korean Wood Sci Technol 2013;41:447–55.10.5658/WOOD.2013.41.5.447Suche in Google Scholar
98. Moodley, K, Dorsamy, CL, Narasigadu, C, Vemblanathan, Y. Excess properties and phase equilibria for the potential biofuel system of propan-2-ol and 2-Methyl-propan-1-ol at 333.15, 343.15, and 353.15 K. J Chem Eng Data 2018;63:2106–13.10.1021/acs.jced.8b00103Suche in Google Scholar
99. Klajmon, M, Řehák, K, Matoušová, M, Morávek, P. Experimental and computational study on liquid-liquid equilibrium in ternary systems of γ-valerolactone, toluene, and hydrocarbons. J Chem Eng Data 2016;61:391–7.10.1021/acs.jced.5b00611Suche in Google Scholar
100. Basso, RC, Meirelles, AJDA, Batista, EAC. Experimental data, thermodynamic modeling and sensitivity analyses for the purification steps of ethyl biodiesel from fodder radish oil production. Braz J Chem Eng 2017;34:341–53.10.1590/0104-6632.20170341s20140197Suche in Google Scholar
101. Cháfer, A, De La Torre, J, Montón, JB, Lladosa, E. Experimental determination and correlation of liquid-liquid equilibria data for a system of water + ethanol + 1-butyl-3-methylimidazolium hexafluorophosphate at different temperatures. J Chem Eng Data 2017;62:773–9.10.1021/acs.jced.6b00829Suche in Google Scholar
102. Quinteros-Lama, H, Cartes, M, Mejía, A, Segura, H. Experimental determination and theoretical modeling of the vapor-liquid equilibrium and densities of the binary system butan-2-ol+tetrahydro-2H-pyran. Fluid Phase Equil 2013;342:52–9. https://doi.org/10.1016/j.fluid.2012.12.021.Suche in Google Scholar
103. Simoni, LD, Chapeaux, A, Brennecke, JF, Stadtherr, MA. Extraction of biofuels and biofeedstocks from aqueous solutions using ionic liquids. Comput Chem Eng 2010;34:1406–12. https://doi.org/10.1016/j.compchemeng.2010.02.020.Suche in Google Scholar
104. Campos-Franzani, MI, Gajardo-Parra, NF, Pazo-Carballo, C, Aravena, P, Santiago, R, Palomar, J, et al.. Extraction of guaiacol from hydrocarbons as an alternative for the upgraded bio-oil purification: experimental and computational thermodynamic study. Fuel 2020;280:118405. https://doi.org/10.1016/j.fuel.2020.118405.Suche in Google Scholar
105. Suarez Garcia, E, Suarez Ruiz, CA, Tilaye, T, Eppink, MHM, Wijffels, RH, van den Berg, C. Fractionation of proteins and carbohydrates from crude microalgae extracts using an ionic liquid based-aqueous two phase system. Separ Purif Technol 2018;204:56–65.10.1016/j.seppur.2018.04.043Suche in Google Scholar
106. Hassan, ESRE, Mutelet, F, Moïse, JC. From the dissolution to the extraction of carbohydrates using ionic liquids. RSC Adv 2013;3:20219–26.10.1039/c3ra42640hSuche in Google Scholar
107. Mejía, A, Segura, H, Cartes, M. Isobaric vapor-liquid equilibrium and isothermal interfacial tensions for the system ethanol + 2,5-dimethylfuran. J Chem Eng Data 2013;58:3226–32.10.1021/je400683gSuche in Google Scholar
108. Hou, J, Xu, S, Ding, H, Sun, T, Hou, J, Xu, S, et al.. On the designing principles and optimization approaches of bio-inspired self-organized network: a survey. J Chem Eng Data 2012;57:2632–9.10.1021/je3003699Suche in Google Scholar
109. Rubio-Pérez, G, Muñoz-Rujas, N, Srhiyer, A, Montero, EA, Aguilar, F. Isobaric vapor-liquid equilibrium, density and speed of sound of binary mixtures 2,2,4-trimethylpentane + 1-butanol or dibutyl ether (DBE) at 101.3 kPa. Fluid Phase Equil 2018;475:10–7.10.1016/j.fluid.2018.07.027Suche in Google Scholar
110. Brits, L, Kouakou, AC, Burger, AJ, Schwarz, CE. Isobaric vapor-liquid-liquid phase equilibria measurements of three ternary water + 2-butanone + aliphatic alcohol (ethanol, 1-propanol, 2-propanol) systems at 101.3 kPa. J Chem Eng Data 2017;62:1767–75.10.1021/acs.jced.6b00725Suche in Google Scholar
111. Zaitseva, A, Laavi, H, Pokki, JP, Uusi-Kyyny, P, Alopaeus, V. Isothermal vapor-liquid equilibrium and excess molar enthalpies of the binary mixtures furfural+methyl isobutyl ketone, +2-butanol and +2-methyl-2-butanol. Fluid Phase Equil 2014;372:85–99. https://doi.org/10.1016/j.fluid.2014.03.033.Suche in Google Scholar
112. Moodley, K, Naidoo, P, Raal, JD, Ramjugernath, D. Isothermal vapor-liquid equilibrium measurements for alcohol + water/n-hexane azeotropic systems using both dynamic and automated static-synthetic methods. J Chem Eng Data 2019;64:2657–70.10.1021/acs.jced.9b00102Suche in Google Scholar
113. Shariati, A, Azaribeni, A, Hajighahramanzadeh, P, Loghmani, Z. Liquid –liquid equilibria of systems containingsunflower oil, ethanol and water. APCBEE Procedia 2013;5:486–90. https://doi.org/10.1016/j.apcbee.2013.05.082.Suche in Google Scholar
114. Maghami, M, Yousefi Seyf, J, Sadrameli, SM, Haghtalab, A. Liquid-liquid phase equilibrium in ternary mixture of waste fish oil biodiesel-methanol-glycerol: experimental data and thermodynamic modeling. Fluid Phase Equil 2016;409:124–30.10.1016/j.fluid.2015.09.046Suche in Google Scholar
115. Bharti, A, Verma, R, Sarvesh Namdeo, P, Malviya, A, Banerjee, T, Sandler, SI. Liquid-liquid equilibria and COSMO-SAC modeling of organic solvent/ionic liquid – hydroxyacetone – water mixtures. Fluid Phase Equil 2018;462:73–84. https://doi.org/10.1016/j.fluid.2018.01.026.Suche in Google Scholar
116. Kilina, A, Kuranov, G, Pukinsky, I, Smirnova, N. Liquid-liquid equilibria for multicomponent mixtures of 2,2-dimethyl-1,3-dioxolane with n-heptane, toluene, ethanol and water. Fluid Phase Equil 2014;380:93–9. https://doi.org/10.1016/j.fluid.2014.08.002.Suche in Google Scholar
117. Samarov, A, Prikhodko, I, Shner, N, Sadowski, G, Held, C, Toikka, A. Liquid-liquid equilibria for separation of alcohols from esters using deep eutectic solvents based on choline chloride: experimental study and thermodynamic modeling. J Chem Eng Data 2019;64:6049–59.10.1021/acs.jced.9b00884Suche in Google Scholar
118. Yakovleva, M, Vorobyov, E, Pukinsky, I, Prikhodko, I, Kuranov, G, Smirnova, N. Liquid-liquid equilibria for ternary mixtures of 2,2-dimethyl-1,3-dioxolane-4-methanol with n-heptane, toluene, ethanol and water. Fluid Phase Equil 2015;405:107–13. https://doi.org/10.1016/j.fluid.2015.07.016.Suche in Google Scholar
119. Asoodeh, A, Eslami, F, Sadrameli, SM. Liquid–liquid equilibria of systems containing linseed oil biodiesel + methanol + glycerol: experimental data and thermodynamic modeling. Fuel 2019;253:460–73. https://doi.org/10.1016/j.fuel.2019.04.170.Suche in Google Scholar
120. Altway, S, Pujar, SC, de Haan, AB. Liquid-liquid equilibria of ternary and quaternary systems involving 5-hydroxymethylfurfural, water, organic solvents, and salts at 313.15 K and atmospheric pressure. Fluid Phase Equil 2018;475:100–10.10.1016/j.fluid.2018.07.034Suche in Google Scholar
121. Cháfer, A, De La Torre, J, Font, A, Lladosa, E. Liquid-liquid equilibria of water + ethanol + 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ternary system: measurements and correlation at different temperatures. J Chem Eng Data 2015;60:2426–33.10.1021/acs.jced.5b00301Suche in Google Scholar
122. Stephan, C, Dicko, M, Stringari, P, Coquelet, C. Liquid-liquid equilibria of water + solutes (acetic acid/acetol/furfural/guaiacol/methanol/phenol/propanal) + solvents (isopropyl acetate/toluene) ternary systems for pyrolysis oil fractionation. Fluid Phase Equil 2018;468:49–57. https://doi.org/10.1016/j.fluid.2018.04.016.Suche in Google Scholar
123. Toikka, M, Trofimova, D, Samarov, A. Liquid-liquid equilibrium and critical states for the quaternary system propionic acid–n-butanol–n-butyl propionate–water at 303.15 K. Fluid Phase Equil 2018;460:17–22.10.1016/j.fluid.2017.12.023Suche in Google Scholar
124. Dagostin, JLA, Carpiné, D, Dos Santos, PRS, Corazza, ML. Liquid-liquid equilibrium and kinetics of ethanolic extraction of soybean oil using ethyl acetate as co-solvent. Braz J Chem Eng 2018;35:415–27.10.1590/0104-6632.20180352s20160175Suche in Google Scholar
125. Shiozawa, S, Gonçalves, D, Ferreira, MC, Meirelles, AJA, Batista, EAC. Liquid-liquid equilibrium data and thermodynamic modeling of systems involved in the biodiesel production in terms of acylglycerols, free fatty acids, ethyl esters, and ethanol at 303.2 and 318.2 K and local pressure. Fluid Phase Equil 2020;507:112431. https://doi.org/10.1016/j.fluid.2019.112431.Suche in Google Scholar
126. Hadlich de Oliveira, L, Morgado, GP, Boni, R, Roque, LR, Pinto, RR, Rabelo, SC. Liquid-liquid equilibrium data and thermophysical properties for ternary systems composed of water, acetic acid and different solvents. Fluid Phase Equil 2019;482:48–63.10.1016/j.fluid.2018.10.021Suche in Google Scholar
127. Cavalcanti, KVM, Follegatti-Romero, LM, Dalmolin, I, Follegatti-Romero, LA. Liquid-liquid equilibrium for (water + 5-hydroxymethylfurfural + 1-pentanol/1-hexanol/1-heptanol) systems at 298.15 K. J Chem Thermodyn 2019;138:59–66.10.1016/j.jct.2019.06.010Suche in Google Scholar
128. Liu, J, Yuan, Y, Pan, Y, Huang, Z, Yang, B. Liquid-liquid equilibrium for systems of glycerol and glycerol tert-butyl ethers. Fluid Phase Equil 2014;365:50–7. https://doi.org/10.1016/j.fluid.2013.12.012.Suche in Google Scholar
129. Santos, T, Gomes, JF, Puna, J. Liquid-liquid equilibrium for ternary system containing biodiesel, methanol and water. J Environ Chem Eng 2018;6:984–90. https://doi.org/10.1016/j.jece.2017.12.068.Suche in Google Scholar
130. Mesquita, FMR, Evangelista, NS, De Sant’Ana, HB, De Santiago-Aguiar, RS. Liquid-liquid equilibrium for the glycerol + alcohol + coconut biodiesel system at different temperatures and atmospheric pressure. J Chem Eng Data 2012;57:3557–62.10.1021/je300749nSuche in Google Scholar
131. Zhang, L, Yu, Y, Liao, Z, Xu, X, Huang, X, Jia, B, et al.. Liquid-liquid equilibrium for the ternary systems water + 1-butanol + 1-hexanol or 1-octanol at 303.15, 313.15, and 323.15 K. J Chem Eng Data 2020;65:477–86.10.1021/acs.jced.9b00479Suche in Google Scholar
132. Esipovich, AL, Rogozhin, AE, Belousov, AS, Kanakov, EA, Otopkova, KV, Danov, SM. Liquid–liquid equilibrium in the systems FAMEs + vegetable oil + methyl alcohol and FAMEs + glycerol + methyl alcohol. Fuel 2018;217:31–7. https://doi.org/10.1016/j.fuel.2017.12.083.Suche in Google Scholar
133. Yim, JH, Park, KW, Lim, JS, Choi, KY. Liquid-liquid equilibrium measurements for the ternary system of water/2,3-butanediol/4-methyl-2-pentanol at various temperatures. J Chem Eng Data 2019;64:3882–8.10.1021/acs.jced.9b00290Suche in Google Scholar
134. Glass, M, Aigner, M, Viell, J, Jupke, A, Mitsos, A. Liquid-liquid equilibrium of 2-methyltetrahydrofuran/water over wide temperature range: measurements and rigorous regression. Fluid Phase Equil 2017;433:212–25.10.1016/j.fluid.2016.11.004Suche in Google Scholar
135. Trofimova, M, Sadaev, A, Samarov, A, Golikova, A, Tsvetov, N, Toikka, M, et al.. Liquid-liquid equilibrium of acetic acid – ethanol – ethyl acetate – water quaternary system: data review and new results at 323.15 K and 333.15 K. Fluid Phase Equil 2020:503.10.1016/j.fluid.2019.112321Suche in Google Scholar
136. Samarov, A, Shner, N, Mozheeva, E, Toikka, A. Liquid-liquid equilibrium of alcohol–ester systems with deep eutectic solvent on the base of choline chloride. J Chem Thermodyn [Internet 2019;131:369–74. https://doi.org/10.1016/j.jct.2018.11.019.Suche in Google Scholar
137. Ferreira, MC, Bessa, LCBA, Shiozawa, S, Meirelles, AJA, Batista, EAC. Liquid-liquid equilibrium of systems containing triacylglycerols (canola and corn oils), diacylglycerols, monoacylglycerols, fatty acids, ester and ethanol at T/K=303.15 and 318.15. Fluid Phase Equil 2015;404:32–41. https://doi.org/10.1016/j.fluid.2015.06.027.Suche in Google Scholar
138. Montesantos, N, Chirullo, M, Maschietti, M. Liquid-liquid equilibrium of water + 2-methoxyphenol + methyl isobutyl ketone and water + 1,2-benzenediol + methyl isobutyl ketone at 303.15 K and 328.15 K. J Chem Eng Data 2018;63:712–22.10.1021/acs.jced.7b00887Suche in Google Scholar
139. Shekarsaraee, S. Liquid-liquid equilibrium study for the system (water + phosphoric acid + propylene carbonate) at different temperatures. J Chem Thermodyn 2017;104:16–23. https://doi.org/10.1016/j.jct.2016.09.008.Suche in Google Scholar
140. Verma, R, Banerjee, T. Liquid-liquid extraction of lower alcohols using menthol-based hydrophobic deep eutectic solvent: experiments and COSMO-SAC predictions. Ind Eng Chem Res 2018;57:3371–81.10.1021/acs.iecr.7b05270Suche in Google Scholar
141. Gomis, V, Font, A, Saquete, MD, García-Cano, J. LLE, VLE and VLLE data for the water-n-butanol-n-hexane system at atmospheric pressure. Fluid Phase Equil 2012;316:135–40. https://doi.org/10.1016/j.fluid.2011.11.025.Suche in Google Scholar
142. Galeotti, N, Burger, J, Hasse, H. Measurement and modeling of phase equilibria in systems containing water, xylose, furfural, and acetic acid. J Chem Eng Data 2019;64:2634–40.10.1021/acs.jced.9b00095Suche in Google Scholar
143. Mardani, S, Laavi, H, Bouget, E, Pokki, JP, Uusi-Kyyny, P, Alopaeus, V. Measurements and modeling of LLE and HE for (methanol + 2,4,4-trimethyl-1-pentene), and LLE for (water + methanol + 2,4,4-trimethyl-1-pentene). J Chem Thermodyn 2015;85:120–8. https://doi.org/10.1016/j.jct.2015.01.013.Suche in Google Scholar
144. Merzougui, A, Bonilla-Petriciolet, A, Hasseine, A, Laiadi, D, Labed, N. Modeling of liquid-liquid equilibrium of systems relevant for biodiesel production using backtracking search optimization. Fluid Phase Equil 2015;388:84–92. https://doi.org/10.1016/j.fluid.2014.12.041.Suche in Google Scholar
145. Fernández, L, Pérez, E, Ortega, J, Canosa, J, Wisniak, J. Multiproperty modeling for a set of binary systems. Evaluation of a model to correlate simultaneously several mixing properties of methyl ethanoate+alkanes and new experimental data. Fluid Phase Equil 2013;341:105–23. https://doi.org/10.1016/j.fluid.2012.12.027.Suche in Google Scholar
146. Wang, X, Li, S, Bai, H, Liu, C. New predictive nonrandom two liquid equation for solid-liquid phase equilibrium in n-alkanes mixture with multiple solid solutions. Ind Eng Chem Res 2019;58:18411–21.10.1021/acs.iecr.9b03678Suche in Google Scholar
147. Granjo, JFO, Nunes, DS, Duarte, BPM, Oliveira, NMC. A comparison of process alternatives for energy-efficient bioethanol downstream processing. Separ Purif Technol 2020;238:116414. https://doi.org/10.1016/j.seppur.2019.116414.Suche in Google Scholar
148. Hakim, M, Abedini Najafabadi, H, Pazuki, G, Vossoughi, M. Novel approach for liquid-liquid phase equilibrium of biodiesel (canola and sunflower) + glycerol + methanol. Ind Eng Chem Res 2014;53:855–64.10.1021/ie4031902Suche in Google Scholar
149. Rossi, CCRS, Cardozo-Filho, L, Guirardello, R. Parameter estimation and thermodynamic model fitting for components in mixtures for bio-diesel production. Clean Technol Environ Policy 2012;14:435–42.10.1007/s10098-012-0463-8Suche in Google Scholar
150. Dehury, P, Mahanta, U, Banerjee, T. Partitioning of butanol between a hydrophobic ionic liquid and aqueous phase: insights from liquid liquid equilibria measurements and molecular dynamics simulations. Fluid Phase Equil 2016;425:421–31. https://doi.org/10.1016/j.fluid.2016.06.007.Suche in Google Scholar
151. Resk, AJ, Peereboom, L, Kolah, AK, Miller, DJ, Lira, CT. Phase equilibria in systems with levulinic acid and ethyl levulinate. J Chem Eng Data 2014;59:1062–8.10.1021/je400814nSuche in Google Scholar
152. Bayazit, K, Gök, A, Uslu, H, Kirbaşlar, ŞI. Phase equilibria of (water+butyric acid+butyl acetate) ternary systems at different temperatures. Fluid Phase Equil 2014;379:185–90.10.1016/j.fluid.2014.07.023Suche in Google Scholar
153. Gomis, V, Saquete, MD, Font, A, García-Cano, J, Martínez-Castellanos, I. Phase equilibria of the water + 1-butanol + 2-pentanol ternary system at 101.3 kPa. J Chem Thermodyn 2018;123:38–45.10.1016/j.jct.2018.03.024Suche in Google Scholar
154. Gomis, V, Font, A, Saquete, MD, García-Cano, J. Phase equilibria of the water+1-butanol+toluene ternary system at 101.3 kPa. Fluid Phase Equil 2015;385:29–36. https://doi.org/10.1016/j.fluid.2014.10.038.Suche in Google Scholar
155. Muhammad, F, Oliveira, MB, Pignat, P, Jaubert, JN, Pinho, SP, Coniglio, L. Phase equilibrium data and modeling of ethylic biodiesel, with application to a non-edible vegetable oil. Fuel 2017;203:633–41. https://doi.org/10.1016/j.fuel.2017.05.007.Suche in Google Scholar
156. Domańska, U, Królikowski, M, Wlazlo, M, Wieckowski, M. Phase equilibrium investigation on 2-phenylethanol in binary and ternary systems: influence of high pressure on density and solid-liquid phase equilibrium. J Phys Chem B 2018;122:6188–97.10.1021/acs.jpcb.8b02500Suche in Google Scholar PubMed
157. Albuquerque, AA, Ng, FTT, Danielski, L, Stragevitch, L. Phase equilibrium modeling in biodiesel production by reactive distillation. Fuel 2020;271:117688. https://doi.org/10.1016/j.fuel.2020.117688.Suche in Google Scholar
158. Zation, THED, Ternary, OF, Diagrams, P. The determination and characterization of ternary phase diagrams; 2019.Suche in Google Scholar
159. Pla-Franco, J, Lladosa, E, Loras, S, Montón, JB. Proposal of isobutyl alcohol as entrainer to separate mixtures formed by ethanol and water and 1-propanol and water. J Chem Eng Data 2017;62:2697–707.10.1021/acs.jced.7b00098Suche in Google Scholar
160. Harvianto, GR, Haider, J, Hong, J, Van Duc Long, N, Shim, JJ, Cho, MH, et al.. Purification of 2,3-butanediol from fermentation broth: process development and techno-economic analysis. Biotechnol Biofuels 2018;11:1–16. https://doi.org/10.1186/s13068-018-1013-3.Suche in Google Scholar PubMed PubMed Central
161. Smirnov, A, Sadaeva, A, Podryadova, K, Toikka, M. Quaternary liquid-liquid equilibrium, solubility and critical states: acetic acid – n-butanol – n-butyl acetate – water at 318.15 K and atmospheric pressure. Fluid Phase Equil 2019;493:102–8. https://doi.org/10.1016/j.fluid.2019.04.020.Suche in Google Scholar
162. Xie, Y, Yu, F, Wang, Y, He, X, Zhou, S, Cui, H. Salt effect on liquid–liquid equilibria of tetrahydrofuran/water/5-hydroxymethylfurfural systems. Fluid Phase Equil 2019;493:137–43. https://doi.org/10.1016/j.fluid.2019.04.018.Suche in Google Scholar
163. Domańska, U, Paduszyński, K, Królikowski, M, Wróblewska, A. Separation of 2-phenylethanol from water by liquid-liquid extraction with ionic liquids: new experimental data and modeling with modern thermodynamic tools. Ind Eng Chem Res 2016;55:5736–47.10.1021/acs.iecr.6b00375Suche in Google Scholar
164. Neves, CMSS, Granjo, JFO, Freire, MG, Robertson, A, Oliveira, NMC, Coutinho, JAP. Separation of ethanol–water mixtures by liquid–liquid extraction using phosphonium-based ionic liquids. Green Chem 2011;13:1517–26.10.1039/c1gc15079kSuche in Google Scholar
165. Zhang, L, Xu, D, Gao, J, Zhang, M, Xia, Z, Ma, Y, et al.. Separation of the mixture pyridine + methylbenzene via several acidic ionic liquids: phase equilibrium measurement and correlation. Fluid Phase Equil 2017;440:103–10. https://doi.org/10.1016/j.fluid.2017.03.009.Suche in Google Scholar
166. Domańska, U, Wlazło, M, Karpińska, M. Separation of water/butan-1-ol with ionic liquids in ternary liquid-liquid phase equilibrium. J Chem Thermodyn 2019;134:76–83.10.1016/j.jct.2019.03.001Suche in Google Scholar
167. Marcilla, A, Olaya, MM, Reyes-Labarta, JA. Simultaneous VLLE data correlation for ternary systems: modification of the NRTL equation for improved calculations. Fluid Phase Equil 2016;426:47–55. https://doi.org/10.1016/j.fluid.2015.12.047.Suche in Google Scholar
168. Lee, KH, Gu, JE, Oh, HY, Park, SJ. Solid-liquid phase equilibria, excess molar volume, and molar refraction deviation for the mixtures of ethanoic acid with propanoic, butanoic, and pentanoic acid. Kor J Chem Eng 2018;35:1710–5.10.1007/s11814-018-0072-2Suche in Google Scholar
169. Domańska, U, Wlazło, M, Dąbrowski, Z, Wiśniewska, A. Ammonium ionic liquids in separation of water/butan-1-ol using liquid-liquid equilibrium diagrams in ternary systems. Fluid Phase Equil 2019;485:23–31.10.1016/j.fluid.2018.12.009Suche in Google Scholar
170. Okuniewski, M, Ramjugernath, D, Naidoo, P, Domańska, U. Solubility data and modeling for sugar alcohols in ionic liquids. J Chem Thermodyn 2014;77:23–30.10.1016/j.jct.2014.04.021Suche in Google Scholar
171. Hassan, ESRE, Mutelet, F, Pontvianne, S, Moïse, JC. Studies on the dissolution of glucose in ionic liquids and extraction using the antisolvent method. Environ Sci Technol 2013;47:2809–16.10.1021/es303884nSuche in Google Scholar PubMed
172. Cháfer, A, de la Torre, J, Lladosa, E, Loras, S. Study of liquid–liquid equilibria at different temperatures of water + ethanol + 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ternary system. Fluid Phase Equil 2016;426:3–9.10.1016/j.fluid.2016.02.003Suche in Google Scholar
173. Saquete, MD, Font, A, García-Cano, J, Blasco, I. Study of the LLE, VLE, and VLLE of the ternary system water + 1-butanol + isoamyl alcohol at 101.3 kPa. J Chem Eng Data 2018;63:3733–43.10.1021/acs.jced.8b00308Suche in Google Scholar
174. Marciniak, A, Wlazło, M, Gawkowska, J. Ternary (liquid + liquid) equilibria of {bis(trifluoromethylsulfonyl)-amide based ionic liquids + butan-1-ol + water}. J Chem Thermodyn 2016;94:96–100. https://doi.org/10.1016/j.jct.2015.11.002.Suche in Google Scholar
175. Xu, X, Liu, W, Li, M, Ri, Y, Wang, Y. Ternary liquid-liquid equilibrium of azeotropes (ester + alcohol) with different ionic liquids at T = 298.15 K. J Chem Eng Data 2017;62:532–8.10.1021/acs.jced.6b00811Suche in Google Scholar
176. Moreau, A, Segovia, JJ, Villamañán, RM, Martín, MC. Thermodynamic behaviour of second generation biofuels: vapour-liquid equilibria and excess enthalpies of the binary mixtures 2-pentanol and n-heptane or 2,2,4-trimethylpentane. Fluid Phase Equil 2014;384:89–94. https://doi.org/10.1016/j.fluid.2014.10.016.Suche in Google Scholar
177. Moreau, A, Martín, MC, Chamorro, CR, Segovia, JJ. Thermodynamic characterization of second generation biofuels: vapour-liquid equilibria and excess enthalpies of the binary mixtures 1-pentanol and cyclohexane or toluene. Fluid Phase Equil 2012;317:127–31. https://doi.org/10.1016/j.fluid.2012.01.007.Suche in Google Scholar
178. Moreau, A, Segovia, JJ, Rubio, J, Martín, MC. Thermodynamics properties, VLE and HE, of the systems 2-pentanol and cyclohexane or methylbenzene for contributing to the knowledge of new biofuels. Fluid Phase Equil 2016;409:92–7.10.1016/j.fluid.2015.09.035Suche in Google Scholar
179. Kanda, LRS, dos Santos, KC, Santos, JTF, Paes, FC, Voll, FAP, Corazza, ML. Vapor-liquid and liquid-liquid equilibrium modeling of systems involving ethanol, water, and ethyl valerate (valeric acid) using the PC-SAFT equation of state. Fluid Phase Equil 2018:474.10.1016/j.fluid.2018.07.014Suche in Google Scholar
180. de Araújo, LC, Silva, CB. Liquid-liquid equilibrium for water furfural extraction using different solvents and temperatures in the software aspen plus/Equilíbrio líquido-líquido para extração de furfural da água usando diferentes solventes e temperaturas no software aspen plus. Braz J Dev 2020;6:36035–45.10.34117/bjdv6n6-230Suche in Google Scholar
181. Parthasarathy, P, Narayanan, SK. Effect of hydrothermal carbonization reaction parameters on. Environ Prog Sustain Energy 2014;33:676–80.10.1002/ep.11974Suche in Google Scholar
182. Salemme, L, Olivieri, G, Raganati, F, Salatino, P, Marzocchella, A. Analysis of the energy efficiency of some butanol recovery processes. Chem Eng Trans 2016;49:109–14.Suche in Google Scholar
183. Martínez, AF, Sánchez, CA, Orjuela, A, Rodríguez, G. Isobutyl acetate by reactive distillation. Non-reactive phase equilibrium and topological analysis. Fluid Phase Equil 2020:516.10.1016/j.fluid.2020.112612Suche in Google Scholar
184. Orjuela, A, Yanez, AJ, Vu, DT, Bernard-Brunel, D, Miller, DJ, Lira, CT. Phase equilibria for reactive distillation of diethyl succinate. Part I. System diethyl succinate + ethanol + water. Fluid Phase Equil 2010;290:63–7. https://doi.org/10.1016/j.fluid.2009.11.014.Suche in Google Scholar
185. Orjuela, A, Yanez, AJ, Evans, J, Hassan, AM, Miller, DJ, Lira, CT. Phase equilibria in binary mixtures with monoethyl succinate. Fluid Phase Equilib 2011;309:121–7. https://doi.org/10.1016/j.fluid.2011.06.020.Suche in Google Scholar
186. Zheng, K, Wu, H, Geng, C, Wang, G, Yang, Y, Li, Y. A comparative study of the perturbed-chain statistical associating fluid theory equation of state and activity coefficient models in phase equilibria calculations for mixtures containing associating and polar components. Ind Eng Chem Res 2018;57:3014–30.10.1021/acs.iecr.7b04758Suche in Google Scholar
187. Graça, NS, Pais, LS, Silva, VMTM, Rodrigues, AE. Dynamic study of the synthesis of 1,1-dibutoxyethane in a fixed-bed adsorptive reactor. Separ Sci Technol 2011;46:631–40.10.1080/01496395.2010.534121Suche in Google Scholar
188. Doungsri, S, Sookkumnerd, T, Wongkoblap, A, Nuchitprasittichai, A. Equilibrium study for ternary mixtures of biodiesel. IOP Conf Ser Mater Sci Eng 2017;273:012008.10.1088/1757-899X/245/1/012008Suche in Google Scholar
189. Wu, YY, Pan, DT, Zhu, JW, Chen, K, Wu, B, Shen, YL. Isobaric vapor-liquid-liquid equilibria for 1-butanol + water + 2,3-butanediol at 101.3 kPa. Chem Eng Commun 2015;202:175–80.10.1080/00986445.2013.836632Suche in Google Scholar
190. Zhang, Q, Peng, W, Chen, Y. Liquid–liquid equilibria for ethanol or 2-propanol aqueous solutions with sec-butyl acetate at four temperatures. J Solution Chem 2019;48:807–17. https://doi.org/10.1007/s10953-019-00894-y.Suche in Google Scholar
191. Evangelista Neto, AA, Sobrinho, JCC, Oliveira, HNM, Freitas, HFS, Silva, FFM, Barros Neto, EL. Liquid-liquid equilibrium data for the pseudo-ternary biodiesel of chicken Fat + methanol + glycerol. Brazilian J Pet Gas 2018;12:123–33.10.5419/bjpg2018-0012Suche in Google Scholar
192. Coutinho, JAP, Gonçalves, M, Pratas, MJ, Batista, MLS, Fernandes, VFS, Pauly, J, et al.. Measurement and modeling of biodiesel cold-flow properties. Energy Fuels 2010;24:2667–74.10.1021/ef901427gSuche in Google Scholar
193. Detcheberry, M, Destrac, P, Massebeuf, S, Baudouin, O, Gerbaud, V, Condoret, JS, et al.. Thermodynamic modeling of the condensable fraction of a gaseous effluent from lignocellulosic biomass torrefaction. Fluid Phase Equil 2016;409:242–55. https://doi.org/10.1016/j.fluid.2015.09.025.Suche in Google Scholar
194. Mazutti, MA, Voll, FAP, Cardozo-Filho, L, Corazza, ML, Lanza, M, Priamo, WL, et al.. Thermophysical properties of biodiesel and related systems: (Liquid + liquid) equilibrium data for castor oil biodiesel. J Chem Thermodyn 2013;62:17–26. https://doi.org/10.1016/j.jct.2013.02.016.Suche in Google Scholar
195. Ershova, O, Pokki, JP, Zaitseva, A, Alopaeus, V, Sixta, H. Vapor pressure, vapor-liquid equilibria, liquid-liquid equilibria and excess enthalpy of the system consisting of isophorone, furfural, acetic acid and water. Chem Eng Sci 2018;176:19–34. https://doi.org/10.1016/j.ces.2017.10.017.Suche in Google Scholar
196. Männistö, M, Pokki, JP, Haapaniemi, H, Alopaeus, V. Quaternary, ternary, and binary lle measurements for 2-methoxy-2-methylpropane + furfural + acetic acid + water at temperatures between 298 and 307 K. J Chem Eng Data 2016;61:2458–66.10.1021/acs.jced.6b00149Suche in Google Scholar
197. Urdaneta, MR, Garc, SI, Faneite, AM, Soto, D, Álvarez, CA. Isothermal vapor–liquid equilibrium data of propan-1-ol+ 2, 2, 4-trimethylpentane and butan-1-ol+ 2, 2, 4-trimethylpentane at 318.15 K. J Chem Eng Data 2011;56:3346–50.10.1021/je200279qSuche in Google Scholar
198. Benziane, M, Khimeche, K, Mokbel, I, Trache, D, Yagoubi, N, Jose, J. Phase equilibrium properties of binary mixtures containing a diesel compound (n-dodecane) + biodiesel compounds (ethyl hexanoate, ethyl decanoate and ethyl tetradecanoate). J Therm Anal Calorim 2016;126:845–54.10.1007/s10973-016-5561-0Suche in Google Scholar
199. Dantas, CES, Ceriani, R. Prediction of liquid-liquid equilibria of multicomponent fatty systems using the ASOG method. Fluid Phase Equil 2020;506:112400. https://doi.org/10.1016/j.fluid.2019.112400.Suche in Google Scholar
200. Hajiw, M, Valtz, A, Ahmar, EE, Coquelet, C. Apparent Henry’s law constants of furan in different n-alkanes and alcohols at temperatures from 293 to 323K. J Environ Chem Eng 2017;5:1205–9. https://doi.org/10.1016/j.jece.2017.02.001.Suche in Google Scholar
201. Li, J, Paricaud, P. Application of the conduct-like screening models for real solvent and segment activity coefficient for the predictions of partition coefficients and vapor-liquid and liquid-liquid equilibria of Bio-oil-related mixtures. Energy Fuels 2012;26:3756–68.10.1021/ef300181jSuche in Google Scholar
202. Machado, GD, Castier, M, Voll, AP, Cabral, VF, Cardozo-Filho, L, Aranda, DAG. Ethanol and methanol Unifac subgroup parameter estimation in the prediction of the liquid-liquid equilibrium of biodiesel systems. Fluid Phase Equil 2019;488:79–86. https://doi.org/10.1016/j.fluid.2019.01.012.Suche in Google Scholar
203. Damaceno, DS, Perederic, OA, Ceriani, R, Kontogeorgis, GM, Gani, R. Improvement of predictive tools for vapor-liquid equilibrium based on group contribution methods applied to lipid technology. Fluid Phase Equil 2018;470:249–58.10.1016/j.fluid.2017.12.009Suche in Google Scholar
204. Noriega, MA, Narváez, PC, Imbachi, AD, Cadavid, JG, Habert, AC. Liquid-liquid equilibrium for biodiesel-glycerol-methanol or ethanol systems using UNIFAC correlated parameters. Energy 2016;111:841–9.10.1016/j.energy.2016.06.031Suche in Google Scholar
205. de Sousa Maia, AC, e Silva, IS, Stragevitch, L. Liquid-liquid equilibrium of methyl esters of fatty acid/methanol/glycerol and fatty acid ethyl esters/ethanol/glycerol: a case study for biodiesel application. Int J Chem Eng Appl 2013;4:285–9.10.7763/IJCEA.2013.V4.311Suche in Google Scholar
206. Bessa, LCBA, Batista, EAC, Meirelles, AJA. Liquid-liquid equilibrium of systems composed of soybean oil + monoacylglycerols + diacylglyce-rols + ethyl oleate + oleic acid + ethanol at 303.15 and 318.15 K. Braz J Chem Eng 2018;35:373–82.10.1590/0104-6632.20180352s20160271Suche in Google Scholar
207. Ferreira, MC, Bessa, LCBA, Abreu, CRA, Meirelles, AJA, Caldas Batista, EA. Liquid-liquid equilibrium of systems containing triolein + (fatty acid/partial acylglycerols/ester) + ethanol: experimental data and UNIFAC modeling. Fluid Phase Equil 2018;476:186–92. https://doi.org/10.1016/j.fluid.2018.07.030.Suche in Google Scholar
208. Perederic, OA, Mansouri, SS, Appel, S, Sarup, B, Gani, R, Woodley, JM, et al.. Process analysis of shea butter solvent fractionation using a generic systematic approach. Ind Eng Chem Res 2020;59:9152–64.10.1021/acs.iecr.9b06719Suche in Google Scholar
209. Dong, NH, de Jean-Charles, H, Rafael, L, Jean-Philippe, P, Pascal, T. Simultaneous liquid-liquid and vapour-liquid equilibria predictions of selected oxygenated aromatic molecules in mixtures with alkanes, alcohols, water, using the polar GC-PC-SAFT. Chem Eng Res Des 2014;92:2912–35. https://doi.org/10.1016/j.cherd.2014.05.018.Suche in Google Scholar
210. Yui, K, Itsukaichi, Y, Kobayashi, T, Tsuji, T, Fukui, K, Maeda, K, et al.. Solid-liquid equilibria in the binary systems of saturated fatty acids or triglycerides (C12 to C18) + hexadecane. J Chem Eng Data 2017;62:35–43.10.1021/acs.jced.6b00355Suche in Google Scholar
211. Perederic, OA, Cunico, LP, Kalakul, S, Sarup, B, Woodley, JM, Kontogeorgis, GM, et al.. Systematic identification method for data analysis and phase equilibria modelling for lipids systems. J Chem Thermodyn 2018;121:153–69. https://doi.org/10.1016/j.jct.2018.02.007.Suche in Google Scholar
212. da Silveira, CL, Salau, NPG. The UNIFAC-LLE and COSMO-SAC ternary aqueous LLE calculations. Fluid Phase Equil 2019;501:112278. https://doi.org/10.1016/j.fluid.2019.112278.Suche in Google Scholar
213. Damaceno, DS, Ceriani, R. Vapor-liquid equilibria of monoacylglicerol + monoacylglicerol or alcohol or fatty acid at subatmospheric pressures. Fluid Phase Equil 2017;452:135–42. https://doi.org/10.1016/j.fluid.2017.08.013.Suche in Google Scholar
214. Robustillo, MD, Bessa, LCBA, de Almeida Meirelles, AJ, de Alcântara Pessôa Filho, P. Experimental data and thermodynamic modeling of solid-liquid equilibrium of binary systems containing representative compounds of biodiesel and fossil fuels: ethyl esters and n-hexadecane. Fuel 2018;220:303–17. https://doi.org/10.1016/j.fuel.2018.01.117.Suche in Google Scholar
215. Yoshidomi, S, Sugami, Y, Minami, E, Shisa, N, Hayashi, H, Saka, S. Predicting solid–liquid equilibrium of fatty acid methyl ester and monoglyceride mixtures as biodiesel model fuels. JAOCS, J Am Oil Chem Soc 2017;94:1087–94.10.1007/s11746-017-3015-xSuche in Google Scholar
216. Paduszyński, K, Domańska, U. Thermodynamic modeling of ionic liquid systems: development and detailed overview of novel methodology based on the PC-SAFT. J Phys Chem B 2012;116:5002–18.10.1021/jp3009207Suche in Google Scholar PubMed
217. Fouad, WA, Haghmoradi, A, Wang, L, Bansal, A, Al Hammadi, A, Asthagiri, D, et al.. Extensions of the SAFT model for complex association in the bulk and interface. Fluid Phase Equil 2016;416:62–71. https://doi.org/10.1016/j.fluid.2015.11.011.Suche in Google Scholar
218. Perdomo, FA, Gil-Villegas, A. Predicting thermophysical properties of biodiesel fuel blends using the SAFT-VR approach. Fluid Phase Equilib 2011;306:124–8. https://doi.org/10.1016/j.fluid.2011.02.021.Suche in Google Scholar
219. Haley, JD, McCabe, C. Predicting the phase behavior of fatty acid methyl esters and their mixtures using the GC-SAFT-VR approach. Fluid Phase Equil 2016;411:43–52. https://doi.org/10.1016/j.fluid.2015.11.012.Suche in Google Scholar
220. Cripwell, JT, Kruger, FJ, Burger, AJ. Accounting for cross association in non-self-associating species using a physically consistent SAFT-VR Mie approach. Fluid Phase Equil 2019;483:1–13. https://doi.org/10.1016/j.fluid.2018.11.003.Suche in Google Scholar
221. Llovell, F, Vega, LF. Accurate modeling of supercritical CO2 for sustainable processes: water + CO2 and CO2 + fatty acid esters mixtures. J Supercrit Fluids 2015;96:86–95. https://doi.org/10.1016/j.supflu.2014.09.040.Suche in Google Scholar
222. Mac Dowell, N, Llovell, F, Sun, N, Hallett, JP, George, A, Hunt, PA, et al.. New experimental density data and soft-SAFT models of alkylimidazolium ([CnC1im]+) chloride (Cl-), methylsulfate ([MeSO4]-), and dimethylphosphate ([Me 2PO4]-) based ionic liquids. J Phys Chem B 2014;118:6206–21.10.1021/jp501619ySuche in Google Scholar PubMed
223. Stavrou, M, Lampe, M, Bardow, A, Gross, J. Continuous molecular targeting-computer-aided molecular design (CoMT-CAMD) for simultaneous process and solvent design for CO2 capture. Ind Eng Chem Res 2014;53:18029–41.10.1021/ie502924hSuche in Google Scholar
224. Janeček, J, Paricaud, P. Influence of cyclic dimer formation on the phase behavior of carboxylic acids. II. cross-associating systems. J Phys Chem B 2013;117:9430–8.10.1021/jp4012125Suche in Google Scholar PubMed
225. Janecek, J, Paricaud, P. Influence of cyclic dimer formation on the phase behavior of carboxylic acids. J Phys Chem B 2012;116:7874–82.10.1021/jp303051jSuche in Google Scholar PubMed
226. Nann, A, Held, C, Sadowski, G. Liquid − liquid equilibria of 1-butanol/water/IL systems. Ind Eng Chem Res 2013;52:18472–81.10.1021/ie403246eSuche in Google Scholar
227. Warrag, SEE, Pototzki, C, Rodriguez, NR, van Sint Annaland, M, Kroon, MC, Held, C, et al.. Oil desulfurization using deep eutectic solvents as sustainable and economical extractants via liquid-liquid extraction: experimental and PC-SAFT predictions. Fluid Phase Equil 2018;467:33–44. https://doi.org/10.1016/j.fluid.2018.03.018.Suche in Google Scholar
228. Corazza, ML, Fouad, WA, Chapman, WG. PC-SAFT predictions of VLE and LLE of systems related to biodiesel production. Fluid Phase Equil 2016;416:130–7. https://doi.org/10.1016/j.fluid.2015.09.044.Suche in Google Scholar
229. Razavi, E, Khoshsima, A, Shahriari, R. Phase behavior modeling of mixtures containing N-, S-, and O-heterocyclic compounds using PC-SAFT equation of state. Ind Eng Chem Res 2019;58:11038–59.10.1021/acs.iecr.9b01429Suche in Google Scholar
230. Altuntepe, E, Reinhardt, A, Brinkmann, J, Briesemann, T, Sadowski, G, Held, C. Phase behavior of binary mixtures containing succinic acid or its esters. J Chem Eng Data 2017;62:1983–93.10.1021/acs.jced.7b00005Suche in Google Scholar
231. Paduszyński, K, Okuniewski, M, Domańska, U. Renewable feedstocks in green solvents: thermodynamic study on phase diagrams of d-sorbitol and xylitol with dicyanamide based ionic liquids. J Phys Chem B 2013;117:7034–46.10.1021/jp401937pSuche in Google Scholar PubMed
232. Paduszyński, K, Okuniewski, M, Domańska, U. Solid-liquid phase equilibria in binary mixtures of functionalized ionic liquids with sugar alcohols: new experimental data and modelling. Fluid Phase Equil 2015;403:167–75.10.1016/j.fluid.2015.06.002Suche in Google Scholar
233. Paduszyński, K, Lukoshko, EV, Królikowski, M, Domańska, U, Szydłowski, J. Thermodynamic study of binary mixtures of 1-butyl-1-methylpyrrolidinium dicyanamide ionic liquid with molecular solvents: new experimental data and modeling with PC-saft equation of state. J Phys Chem B 2015;119:543–51.10.1021/jp511621jSuche in Google Scholar PubMed
234. Altuntepe, E, Emel’yanenko, VN, Forster-Rotgers, M, Sadowski, G, Verevkin, SP, Held, C. Thermodynamics of enzyme-catalyzed esterifications: II. Levulinic acid esterification with short-chain alcohols. Appl Microbiol Biotechnol 2017;101:7509–21.10.1007/s00253-017-8481-4Suche in Google Scholar PubMed
235. Nala, M, Auger, E, Gedik, I, Ferrando, N, Dicko, M, Paricaud, P, et al.. Vapour-liquid equilibrium (VLE) for the systems furan+n-hexane and furan+toluene. Measurements, data treatment and modeling using molecular models. Fluid Phase Equil 2013;337:234–45. https://doi.org/10.1016/j.fluid.2012.08.005.Suche in Google Scholar
236. Paduszyński, K, Okuniewski, M, Domańska, U. “Sweet-in-Green” systems based on sugars and ionic liquids: new solubility data and thermodynamic analysis. Ind Eng Chem Res 2013;52:18482–91.10.1021/ie4033186Suche in Google Scholar
237. NguyenHuynh, D, Mai, CTQ. Application of the modified group contribution PC-SAFT to carboxylic acids and their mixtures. Ind Eng Chem Res 2019;58:8923–34.10.1021/acs.iecr.9b02052Suche in Google Scholar
238. Mohammad, S, Grundl, G, Müller, R, Kunz, W, Sadowski, G, Held, C. Influence of electrolytes on liquid-liquid equilibria of water/1-butanol and on the partitioning of 5-hydroxymethylfurfural in water/1-butanol. Fluid Phase Equil 2016;428:102–11.10.1016/j.fluid.2016.05.001Suche in Google Scholar
239. Mohammad, S, Held, C, Altuntepe, E, Köse, T, Sadowski, G. Influence of salts on the partitioning of 5-hydroxymethylfurfural in water/MIBK. J Phys Chem B 2016;120:3797–808.10.1021/acs.jpcb.5b11588Suche in Google Scholar PubMed
240. Sun, Y, Schemann, A, Held, C, Lu, X, Shen, G, Ji, X. Modeling thermodynamic derivative properties and gas solubility of ionic liquids with ePC-SAFT. Ind Eng Chem Res 2019;58:8401–17.10.1021/acs.iecr.9b00254Suche in Google Scholar
241. Mohammad, S, Held, C, Altuntepe, E, Köse, T, Gerlach, T, Smirnova, I, et al.. Salt influence on MIBK/water liquid-liquid equilibrium: measuring and modeling with ePC-SAFT and COSMO-RS. Fluid Phase Equil 2016;416:83–93.10.1016/j.fluid.2015.11.018Suche in Google Scholar
242. Liebergesell, B, Kaminski, S, Pauls, C, de Loos, TW, Vlugt, TJH, Leonhard, K, et al.. High-pressure vapor-liquid equilibria of the second generation biofuel blends (2-methylfuran+iso-octane) and (2-methyltetrahydrofuran+di-n-butyl ether): experiments and PCP-SAFT modeling. Fluid Phase Equil 2015;400:95–102. https://doi.org/10.1016/j.fluid.2015.05.002.Suche in Google Scholar
243. Rodriguez, G, Beckman, EJ. Modelling phase behavior of biodiesel related systems with CO2 using a polar version of PC-SAFT. Fluid Phase Equil 2019;485:32–43. https://doi.org/10.1016/j.fluid.2018.12.003.Suche in Google Scholar
244. Rodriguez, G, Beckman, EJ. Predicting initial reactant miscibility for CO2-enhanced transesterification of triglycerides with methanol using a polar version of PC-SAFT. Ind Eng Chem Res 2019;58:22598–608.10.1021/acs.iecr.9b03235Suche in Google Scholar
245. Liebergesell, B, Brands, T, Koß, HJ, Bardow, A. Quaternary isothermal vapor-liquid equilibrium of the model biofuel 2-butanone + n-heptane + tetrahydrofuran + cyclohexane using Raman spectroscopic characterization. Fluid Phase Equil 2018;472:107–16. https://doi.org/10.1016/j.fluid.2018.04.009.Suche in Google Scholar
246. Ahmed, S, Ferrando, N, De Hemptinne, JC, Simonin, JP, Bernard, O, Baudouin, O. Modeling of mixed-solvent electrolyte systems. Fluid Phase Equil 2018;459:138–57. https://doi.org/10.1016/j.fluid.2017.12.002.Suche in Google Scholar
247. Ahmed, S, Ferrando, N, De Hemptinne, JC, Simonin, JP, Bernard, O, Baudouin, O. A new PC-SAFT model for pure water, water-hydrocarbons, and water-oxygenates systems and subsequent modeling of VLE, VLLE, and LLE. J Chem Eng Data 2016;61:4178–90.10.1021/acs.jced.6b00565Suche in Google Scholar
248. Grandjean, L, De Hemptinne, JC, Lugo, R. Application of GC-PPC-SAFT EoS to ammonia and its mixtures. Fluid Phase Equil 2014;367:159–72. https://doi.org/10.1016/j.fluid.2014.01.025.Suche in Google Scholar
249. Pereira, CG, Féjean, C, Betoulle, S, Ferrando, N, Lugo, R, de Hemptinne, JC, et al.. Guaiacol and its mixtures: new data and predictive models part 1: phase equilibrium. Fluid Phase Equil 2018;470:75–90.10.1016/j.fluid.2018.01.035Suche in Google Scholar
250. Nguyen-Huynh, D, De Hemptinne, JC, Lugo, R, Passarello, JP, Tobaly, P. Modeling liquid-liquid and liquid-vapor equilibria of binary systems containing water with an alkane, an aromatic hydrocarbon, an alcohol or a gas (methane, ethane, CO2 or H2S), using group contribution polar perturbed-chain statistical associating fluid. Ind Eng Chem Res 2011;50:7467–83.10.1021/ie102045gSuche in Google Scholar
251. Novella, A, Gañán, N, Camy, S, Condoret, JS. Recovery of carboxylic acids from dilute aqueous solutions using a supercritical CO2 packed column. Paper presented at: Extraction – Fractionation Processes (PF02). 12th International Symposium on Supercritical Fluids; 2018 April 22-25; Antibes, France.Suche in Google Scholar
252. Prieto, MG, Sánchez, FA, Pereda, S. A group contribution equation of state for biorefineries. GCA-EOS extension to bioether fuels and their mixtures with n-alkanes. J Chem Eng Data 2019;64:2170–85.10.1021/acs.jced.8b01153Suche in Google Scholar
253. Sánchez, FA, Ille, Y, Dahmen, N, Pereda, S. GCA-EOS extension to mixtures of phenol ethers and derivatives with hydrocarbons and water. Fluid Phase Equil 2019;490:13–21.10.1016/j.fluid.2019.02.017Suche in Google Scholar
254. Sánchez, FA, Pereda, S, Brignole, EA. GCA-EoS: a SAFT group contribution model-Extension to mixtures containing aromatic hydrocarbons and associating compounds. Fluid Phase Equil 2011;306:112–23.10.1016/j.fluid.2011.03.024Suche in Google Scholar
255. Paulo, CI, Soledad Diaz, M, Brignole, EA. Minimizing costs in near-critical bioethanol extraction and dehydration processes. Energy Fuels 2012;26:3785–95.10.1021/ef3002907Suche in Google Scholar
256. Soria, TM, Sánchez, FA, Pereda, S, Bottini, SB. Modeling alcohol+water+hydrocarbon mixtures with the group contribution with association equation of state GCA-EoS. Fluid Phase Equil 2010;296:116–24.10.1016/j.fluid.2010.02.040Suche in Google Scholar
257. Prieto, MG, Sánchez, FA, Pereda, S. Modeling phase equilibria of ethers and alcohols with GCA-EOS for assessing the coblending of advanced biofuels. J Chem Eng Data 2019;64:2504–18.10.1021/acs.jced.9b00030Suche in Google Scholar
258. Ille, Y, Sánchez, FA, Dahmen, N, Pereda, S. Multiphase equilibria modeling of Fast pyrolysis bio-oils. Group contribution associating equation of state extension to lignin monomers and derivatives. Ind Eng Chem Res 2019;58:7318–31.10.1021/acs.iecr.9b00227Suche in Google Scholar
259. Soria, TM, Andreatta, AE, Pereda, S, Bottini, SB. Thermodynamic modeling of phase equilibria in biorefineries. Fluid Phase Equil 2011;302:1–9.10.1016/j.fluid.2010.10.029Suche in Google Scholar
260. Oliveira, MB, Queimada, AJ, Coutinho, JAP. Prediction of near and supercritical fatty acid ester + alcohol systems with the CPA EoS. J Supercrit Fluids 2010;52:241–8.10.1016/j.supflu.2010.01.014Suche in Google Scholar
261. Palma, AM, Oliveira, MB, Queimada, AJ, Coutinho, JAP. Re-evaluating the CPA EoS for improving critical points and derivative properties description. Fluid Phase Equil 2017;436:85–97.10.1016/j.fluid.2017.01.002Suche in Google Scholar
262. Mejía, A, Oliveira, MB, Segura, H, Cartes, M, Coutinho, JAP. Isobaric vapor-liquid equilibrium and isothermal surface tensions of 2,2′-oxybis[propane]+2,5-Dimethylfuran. Fluid Phase Equil 2013;345:60–7. https://doi.org/10.1016/j.fluid.2013.02.005.Suche in Google Scholar
263. Follegatti-Romero, LA, Oliveira, MB, Batista, EAC, Coutinho, JAP, Meirelles, AJA. Liquid-liquid equilibria for ethyl esters + ethanol + water systems: experimental measurements and CPA EoS modeling. Fuel 2012;96:327–34. https://doi.org/10.1016/j.fuel.2011.12.056.Suche in Google Scholar
264. Palma, AM, Queimada, AJ, Coutinho, JAP. Modeling of the mixture critical locus with a modified cubic plus association equation of state: water, alkanols, amines, and alkanes. Ind Eng Chem Res 2018;57:10649–62.10.1021/acs.iecr.8b01960Suche in Google Scholar
265. Oliveira, MB, Miguel, SI, Queimada, AJ, Coutinho, JAP. Phase equilibria of ester + alcohol systems and their description with the cubic-plus-association equation of state. Ind Eng Chem Res 2010;49:3452–8.10.1021/ie901470sSuche in Google Scholar
266. Khoshsima, A, Shahriari, R. Molecular modeling of systems related to the biodiesel production using the PHSC equation of state. Fluid Phase Equil 2018;458:58–83. https://doi.org/10.1016/j.fluid.2017.10.029.Suche in Google Scholar
267. Harwood, DB, Peters, CJ, Siepmann, JI. A Monte Carlo simulation study of the liquid-liquid equilibria for binary dodecane/ethanol and ternary dodecane/ethanol/water mixtures. Fluid Phase Equil 2015;407:269–79. https://doi.org/10.1016/j.fluid.2015.07.011.Suche in Google Scholar
268. Ferrando, N, Lachet, V, Pérez-Pellitero, J, MacKie, AD, Malfreyt, P, Boutin, A. A transferable force field to predict phase equilibria and surface tension of ethers and glycol ethers. J Phys Chem B 2011;115:10654–64.10.1021/jp203278tSuche in Google Scholar PubMed
269. Rocha, MAA, Kerlé, D, Kiefer, J, Schroër, W, Rathke, B. Liquid-liquid phase behavior of solutions of 1,3-diethylimidazolium bis((trifluoromethyl)sulfonyl)amide in n-alkyl alcohols. J Chem Eng Data 2020;65:1345–57.10.1021/acs.jced.9b00800Suche in Google Scholar
270. Yiannourakou, M, Ungerer, P, Leblanc, B, Ferrando, N, Teuler, JM. Overview of medeA®-GIBBS capabilities for thermodynamic property calculation and VLE behaviour description of pure compounds and mixtures: application to polar compounds generated from ligno-cellulosic biomass. Mol Simulat 2013;39:1165–211. https://doi.org/10.1080/08927022.2013.830182.Suche in Google Scholar
271. Yang, HE, Bae, YC. Thermodynamic analysis of phase equilibrium and surface tension of ternary polymer solutions. AIChE J 2019;65:1–10.10.1002/aic.16679Suche in Google Scholar
272. Villar, L, González, B, Díaz, I, Domínguez, Á, González, EJ. Role of the cation on the liquid extraction of levulinic acid from water using NTf2-based ionic liquids: experimental data and computational analysis. J Mol Liq 2020;302:112561. https://doi.org/10.1016/j.molliq.2020.112561.Suche in Google Scholar
273. Wu, Z, Liu, C, Cheng, H, Chen, L, Qi, Z. Tuned extraction and regeneration process for separation of hydrophobic compounds by aqueous ionic liquid. J Mol Liq 2020;308:113032. https://doi.org/10.1016/j.molliq.2020.113032.Suche in Google Scholar
274. Ozturk, B, Gonzalez-Miquel, M. Alkanediol-based deep eutectic solvents for isolation of terpenoids from citrus essential oil: experimental evaluation and COSMO-RS studies. Separ Purif Technol 2019;227:115707. https://doi.org/10.1016/j.seppur.2019.115707.Suche in Google Scholar
275. Scheffczyk, J, Schäfer, P, Fleitmann, L, Thien, J, Redepenning, C, Leonhard, K, et al.. COSMO-CAMPD: a framework for integrated design of molecules and processes based on COSMO-RS. Mol Syst Des Eng 2018;3:645–57.10.1039/C7ME00125HSuche in Google Scholar
276. Anantharaj, R, Banerjee, T. COSMO-RS-based screening of ionic liquids as green solvents in denitrification studies. Ind Eng Chem Res 2010;49:8705–25.10.1021/ie901341kSuche in Google Scholar
277. Martins, MAR, Silva, LP, Schaeffer, N, Abranches, DO, Maximo, GJ, Pinho, SP, et al.. Greener terpene-terpene eutectic mixtures as hydrophobic solvents. ACS Sustain Chem Eng 2019;7:17414–23.10.1021/acssuschemeng.9b04614Suche in Google Scholar
278. Martins, MAR, Neves, CMSS, Kurnia, KA, Luís, A, Santos, LMNBF, Freire, MG, et al.. Impact of the cation symmetry on the mutual solubilities between water and imidazolium-based ionic liquids. Fluid Phase Equil 2014;375:161–7. https://doi.org/10.1016/j.fluid.2014.05.013.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Three-phase modeling and optimization of benzene alkylation in commercial catalytic reactors
- Control of negative gain nonlinear processes using sliding mode controllers with modified Nelder-Mead tuning equations
- Novel control strategy for non-minimum-phase unstable second order systems: generalised predictor based approach
- Modelling adiabatic flame temperature for methane with an overview for advanced combustion process: flameless combustion
- Evaluation the effect of the ambient temperature on the liquid petroleum gas transportation pipeline
- Performance of molecular dynamics simulation for predicting of solvation free energy of neutral solutes in methanol
- Reviews
- Phase equilibria modeling of biorefinery-related systems: a systematic review
- On the drag force closures for multiphase flow modeling
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Three-phase modeling and optimization of benzene alkylation in commercial catalytic reactors
- Control of negative gain nonlinear processes using sliding mode controllers with modified Nelder-Mead tuning equations
- Novel control strategy for non-minimum-phase unstable second order systems: generalised predictor based approach
- Modelling adiabatic flame temperature for methane with an overview for advanced combustion process: flameless combustion
- Evaluation the effect of the ambient temperature on the liquid petroleum gas transportation pipeline
- Performance of molecular dynamics simulation for predicting of solvation free energy of neutral solutes in methanol
- Reviews
- Phase equilibria modeling of biorefinery-related systems: a systematic review
- On the drag force closures for multiphase flow modeling