Startseite Pyrolysis of corn cob: physico-chemical characterization, thermal decomposition behavior and kinetic analysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pyrolysis of corn cob: physico-chemical characterization, thermal decomposition behavior and kinetic analysis

  • Sanjay Singh und Ashish N. Sawarkar ORCID logo EMAIL logo
Veröffentlicht/Copyright: 19. Oktober 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Bioenergy out of lignocellulosic biomass, especially from agricultural crop residues, is making massive inroads in our quest for sustainable environment. In the present study, detailed physico-chemical characterization, thermal degradation characteristics, and kinetics of pyrolysis of corn cob are reported. Thermogravimetric experiments were performed at different heating rates, such as, 10, 20, and 30 °C/min in an inert atmosphere. Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves inferred the thermal behavior characteristics of corn cob. Significant content of cellulose and hemicellulose put together (76.23%) suggested tremendous potential of corn cob to give enhanced yield of bio-oil through pyrolysis. Maximum mass loss of 61.92% for corn cob was observed in the temperature range of 180–360 °C. The kinetic parameters for pyrolysis of corn cob were determined by employing model-free isoconversional methods like, Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, and Starink. Activation energy from FWO (62.44 kJ/mol) and Starink (61.74 kJ/mol) method for pyrolysis of corn cob was found to be in close proximity. The results revealed prospective bioenergy potential of corn cob as a feedstock for pyrolysis process.


Corresponding author: Ashish N. Sawarkar, Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India, E-mail:

Acknowledgements

Authors are thankful to Prof. V.S. Moholkar, IIT Guwahati for providing TGA facility and to lab In-charge Mr. Dhiren Huzuri, IIT Guwahati for his kind co-operation in conducting the experiments.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sawarkar, AN. Cavitation induced upgrading of heavy oil and bottom-of-the-barrel: a review. Ultrason Sonochem 2019 https://doi.org/10.1016/j.ultsonch.2019.104690.10.1016/j.ultsonch.2019.104690Suche in Google Scholar PubMed

2. Dhyani, V, Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 2018;129:695–716 https://doi.org/10.1016/j.renene.2017.04.035.10.1016/j.renene.2017.04.035Suche in Google Scholar

3. Anca-Couce, A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci 2016;53:41–79 https://doi.org/10.1016/j.pecs.2015.10.002.10.1016/j.pecs.2015.10.002Suche in Google Scholar

4. Salimi, P, Norouzi, O, Pourhoseini, SEM, Bartocci, P, Tavasoli, A, Di Maria, F, et al. Magnetic biochar obtained through catalytic pyrolysis of macroalgae: a promising anode material for Li-ion batteries. Renew Energy 2019;140:704–14. https://doi.org/10.1016/j.renene.2019.03.077.10.1016/j.renene.2019.03.077Suche in Google Scholar

5. Ighalo, JO, Adeniyi, AG. Modelling of thermochemical energy recovery processes for switchgrass (Panicum virgatum). Indian Chem Eng 2020. https://doi.org/10.1080/00194506.2020.1711535.10.1080/00194506.2020.1711535Suche in Google Scholar

6. Edrisi, SC, Abhilash, PC. Exploring marginal and degraded lands for biomass and bioenergy production. Renew Sustain Energy Rev 2016;54:153751. https://doi.org/10.1016/j.rser.2015.10.050.10.1016/j.rser.2015.10.050Suche in Google Scholar

7. Gokul, PV, Singh, P, Singh, VP, Sawarkar, AN. Thermal behavior and kinetics of pyrolysis of areca nut husk. Energy Sources, Part A Recovery, Utilization, and Environmental Effects 2019;41:2906–16. https://doi.org/10.1080/15567036.2019.1582733.10.1080/15567036.2019.1582733Suche in Google Scholar

8. Singh, S, Sawarkar, AN. Thermal decomposition aspects and kinetics of pyrolysis of garlic stalk. Energy Sources, Part A: Recovery. Utilization, and Environmental Effects 2020. https://doi.org/10.1080/15567036.2020.1716891.10.1080/15567036.2020.1716891Suche in Google Scholar

9. Singh, P, Singh, RK, Gokul, PV, Hasan, SH, Sawarkar, AN. Thermal degradation and pyrolysis kinetics of two Indian rice husk varieties using thermogravimetric analysis. Energy Sources, Part A: recovery, Utilization, and Environmental Effects; 2020. https://doi.org/10.1080/15567036.2020.1736215.10.1080/15567036.2020.1736215Suche in Google Scholar

10. Singh, RK, Pandey, D, Patil, T, Sawarkar, AN. Pyrolysis of banana leaves biomass: physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses. Bioresour Technol 2020;310. https://doi.org/10.1016/j.biortech.2020.123464.10.1016/j.biortech.2020.123464Suche in Google Scholar PubMed

11. Abraham, A, Mathew, AK, Sindhu, R, Pandey, A, Binod, P. Potential of rice straw for bio-refining: an overview. Bioresour Technol 2016;215:29–36. https:/doi.org/10.1016/j.biortech.2016.04.011.10.1016/j.biortech.2016.04.011Suche in Google Scholar

12. Cao, Q, Xie, K, Bao, W, Shen, S. Pyrolytic behavior of waste corn cob. Bioresour Technol 2004;94:83–9. https://doi.org/10.1016/j.biortech.2003.10.031.10.1016/j.biortech.2003.10.031Suche in Google Scholar

13. Gai, C, Dong, Y, Zhang, T. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresour Technol 2013;127:298–305. https://doi.org/10.1016/j.biortech.2012.09.089.10.1016/j.biortech.2012.09.089Suche in Google Scholar

14. Balogun, AO, Lasode, OA, Mcdonald, AG. Thermochemical and pyrolytic analyses of Musa spp. residues from the rainforest belt of Nigeria. Environ Prog Sustain Energy 2018;37:1932–42. https://doi.org/10.1002/ep.12869.10.1002/ep.12869Suche in Google Scholar

15. Kumar, M, Sabbarwal, S, Mishra, PK, Upadhyay, SN. Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies. Bioresour Technol 2019;279:262–70. https://doi.org/10.1016/j.biortech.2019.01.137.10.1016/j.biortech.2019.01.137Suche in Google Scholar

16. Aboyade, AO, Hugo, TJ, Carrier, M, Meyer, EL, Stahl, R, Knoetze, JH, et al. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugarcane bagasse in an inert atmosphere. Thermochim Acta 2011;517:81–9. https:/doi.org/10.1016/j.tca.2011.01.035.10.1016/j.tca.2011.01.035Suche in Google Scholar

17. Sawarkar, AN, Singh, VP. Disparities in the kinetic results of pyrolysis of biomass: recent advances and the possible way forward. In: Paper presented at the 1st International Conference on Recent Advances in Bio-Energy Research (ICRABR-2015). Sardar Swaran Singh National Institute of Renewable Energy, Kapurthala, India; 2015.February 25–28.Suche in Google Scholar

18. Lopez-Velazquez, MA, Santes, V, Balmaseda, J, Torres-Garcia, E. Pyrolysis of orange waste: a thermo-kinetic study. J Anal Appl Pyrol 2013;99:170–7. https://doi.org/10.1016/j.jaap.2012.09.016.10.1016/j.jaap.2012.09.016Suche in Google Scholar

19. Ozawa, TA. New method of analyzing thermogravimetric data. Bull Chem Soc Jpn 1965;38:1881–6. https://doi.org/10.1246/bcsj.38.1881.10.1246/bcsj.38.1881Suche in Google Scholar

20. Starink, MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 2003;404:163–76. https://doi.org/10.1016/S0040-6031(03)00144-8.10.1016/S0040-6031(03)00144-8Suche in Google Scholar

21. Kissinger, HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 1956;57:217–21. https://doi.org/10.1.1.328.8962.10.6028/jres.057.026Suche in Google Scholar

22. Shadangi, KP, Mohanty, K. Kinetic study and thermal analysis of the pyrolysis of non-edible oilseed powders by thermogravimetric and differential scanning calorimetric analysis. Renew Energy 2014;63:337–44. https://doi.org/10.1016/j.renene.2013.09.039.10.1016/j.renene.2013.09.039Suche in Google Scholar

23. Mansaray, KG, Ghaly, AE. Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis. Biomass Bioenergy 1999;17:19–31. https://doi.org/10.1016/S0961-9534(99)00022-7.10.1016/S0961-9534(99)00022-7Suche in Google Scholar

24. Biagini, E, Fantei, A, Tognotti, L. Effect of the heating rate on the devolatilization of biomass residues. Thermochim Acta 2008;472:55–63. https://doi.org/10.1016/j.tca.2008.03.015.10.1016/j.tca.2008.03.015Suche in Google Scholar

25. Yang, H, Yan, R, Chen, H, Lee, DH, Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007;86:1781–8. https://doi.org/10.1016/j.fuel.2006.12.013.10.1016/j.fuel.2006.12.013Suche in Google Scholar

26. Giudicianni, P, Cardone, G, Ragucci, R. Cellulose, hemicellulose and lignin slow steam pyrolysis: thermal decomposition of biomass components mixtures. J Anal Appl Pyrol 2013;100:213–22. https://doi.org/10.1016/j.jaap.2012.12.026.10.1016/j.jaap.2012.12.026Suche in Google Scholar

27. Singh, RK, Patil, T, Sawarkar, AN. Pyrolysis of garlic husk biomass: physico-chemical characterization, thermodynamic and kinetic analyses. Bioresource Technology Reports 2020;12:100558. https://doi.org/10.1016/j.biteb.2020.100558.10.1016/j.biteb.2020.100558Suche in Google Scholar

28. Munir, S, Sattar, H, Nadeem, A, Azam, M. Thermal and kinetic performance analysis of corncobs, Falsa sticks, and Chamalang coal under oxidizing and inert atmospheres. Energy Sources, Part A Recovery, Util Environ Eff 2017;39:775–82. https://doi.org/10.1080/15567036.2016.1263254.10.1080/15567036.2016.1263254Suche in Google Scholar

29. Thossaporn, O, Nakorn, T, Anqing, Z, Haibin, L. Pyrolysis behavior and kinetics of corn residue pellets and eucalyptus wood chips in a macro thermogravimetric analyzer. Case Studies in Thermal Engineering 2018;12:546–56. https://doi.org/10.1016/j.csite.2018.07.011.10.1016/j.csite.2018.07.011Suche in Google Scholar

30. Akinwale, O, Aboyade, TJ, Hugo, MC, Edson, L, Meyer, RS, Johannes, HK, et al. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugarcane bagasse in an inert atmosphere. Thermochim Acta 2011;517:81–9. https://doi.org/10.1016/j.tca.2011.01.035.10.1016/j.tca.2011.01.035Suche in Google Scholar

31. Xuan, L, Yang, Z, Zifu, L, Rui, F, Yaozhong, Z. Characterization of corncob-derived biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. Bioresour Technol 2014;170:76–82. https://doi.org/10.1016/j.biortech.2014.07.077.10.1016/j.biortech.2014.07.077Suche in Google Scholar PubMed

32. Munir, S, Daood, SS, Nimmo, W, Cunliffe, AM, Gibbs, BM. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol 2009;100:1413–18. https://doi.org/10.1016/j.biortech.2008.07.065.10.1016/j.biortech.2008.07.065Suche in Google Scholar PubMed

33. Zhengqi, L, Wei, Z, Baihong, M, Chunlong, L, Qunyi, Z, Guangbo, Z. Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models. Bioresour Technol 2008;99:7616–22. https://doi.org/10.1016/j.biortech.2008.02.003.10.1016/j.biortech.2008.02.003Suche in Google Scholar PubMed

34. Xu, Y, Chen, B. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol 2013;146:485–93. https://doi.org/10.1016/j.biortech.2013.07.086.10.1016/j.biortech.2013.07.086Suche in Google Scholar PubMed

35. Ahmad, MS, Mehmood, MA, Al Ayed, OS, Ye, G, Luo, H, Ibrahim, M. Kinetic analyses and pyrolytic behavior of Para grass (Urochloamutica) for its bioenergy potential. Bioresour Technol 2017;224:708–13. https://doi.org/10.1016/j.biortech.2016.10.090.10.1016/j.biortech.2016.10.090Suche in Google Scholar PubMed

36. Mehmood, MA, Ye, G, Luo, H, Liu, C, Malik, S, Afzal, I. Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour Technol 2017;228:18–24. https://doi.org/10.1016/j.biortech.2016.12.096.10.1016/j.biortech.2016.12.096Suche in Google Scholar PubMed

Received: 2020-05-14
Accepted: 2020-09-27
Published Online: 2020-10-19

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2020-0048/html?lang=de
Button zum nach oben scrollen