Startseite Energy saving in batch distillation for separation of ternary zeotropic mixture integrated with vapor recompression scheme: dynamics and control
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Energy saving in batch distillation for separation of ternary zeotropic mixture integrated with vapor recompression scheme: dynamics and control

  • Gandu Radhika , Akash Kumar Burolia , Pandiyan Kuppusamy Raghu Raja , Seshagiri Rao Ambati , Dipesh S. Patle ORCID logo und Uday Bhaskar Babu Gara EMAIL logo
Veröffentlicht/Copyright: 1. Januar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work, tight composition control and in parallel the operation is integrated with vapor recompression scheme (VRC) is proposed to achieve energy savings and maximum product at a specified high purity for the separation of ternary zeotropic mixture in batch distillation. Firstly, the model representing a ternary system of hexanol/octanol/decanol has been simulated to analyze the open-loop and close-loop dynamics of the process. Secondly, the open-loop and closed-loop operations are integrated with single stage VRC scheme to achieve energy savings. Single stage VRC is operated at very high compression ratio (CR) due to the large temperature difference of the top and bottom streams in batch distillation column. To further improve the thermodynamic efficiency of single stage VRC, double stage compression without intercoolers between the stages of VRC is proposed. Two control schemes have been implemented for constant composition, namely proportional integral (PI) controller and nonlinear gain scheduling proportional integral (GSPI) with and without VRC in closed-loop. The results shows that double stage VRC with GSPI algorithm provides better performance than conventional in terms of energy, product amount and Integral Square Error (ISE).


Corresponding author: Uday Bhaskar Babu Gara, Chemical Engineering, National Institute of Technology Warangal, Warangal, Telangana, 506004, India, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Parhi, SS, Rangaiah, GP, Jana, AK. Mixed-Integer dynamic optimization of conventional and vapor recompressed batch distillation for economic and environmental objectives. Chem Eng Res Des 2020;154:70–85.10.1016/j.cherd.2019.12.006Suche in Google Scholar

2. Treybal, RE. Mass transfer operations. New York: McGraw-Hill; 1980:466 p.Suche in Google Scholar

3. Jana, AK. Chemical process modelling and computer simulation. PHI Learning Pvt. Ltd.; 2018.Suche in Google Scholar

4. Barolo, M, Berto, F. Composition control in batch distillation: binary and multicomponent mixtures. Ind Eng Chem Res 1998;37:4689–98. https://doi.org/10.1021/ie980439o.Suche in Google Scholar

5. Fieg, G. Composition control of distillation columns with a side stream by using gas chromatographs. Chem Eng Process: Process Intensification 2002;41:123–33. https://doi.org/10.1016/s0255-2701(01)00120-9.Suche in Google Scholar

6. MATHEW, J, KN, A. Distillate composition control OF binary distillation column. J Impact Factor 2014;5:79–85.10.34218/IJDMT.5.3.2014.30320140503010Suche in Google Scholar

7. Luyben, WL. Design and control of distillation columns with inert venting. Comput Chem Eng 2020;134:106725. https://doi.org/10.1016/j.compchemeng.2020.106725.Suche in Google Scholar

8. Warter, M, Demicoli, D, Stichlmair, J. Operation of a batch distillation column with a middle vessel: experimental results for the separation of zeotropic and azeotropic mixtures. Chem Eng Process: Process Intensification 2004;43:263–72. https://doi.org/10.1016/s0255-2701(03)00122-3.Suche in Google Scholar

9. Fuentes, C, Luyben, WL. Control of high-purity distillation columns. Ind Eng Chem Process Des Dev 1983;22:361–6. https://doi.org/10.1021/i200022a004.Suche in Google Scholar

10. Jana, AK. Heat integrated distillation operation. Appl Energy 2010;87:1477–94. https://doi.org/10.1016/j.apenergy.2009.10.014.Suche in Google Scholar

11. Luyben, WL. High-pressure versus low-pressure auxiliary condensers in distillation vapor recompression. Comput Chem Eng 2019;125:427–33. https://doi.org/10.1016/j.compchemeng.2019.03.023.Suche in Google Scholar

12. Felbab, N, Patel, B, El‐Halwagi, MM, Hildebrandt, D, Glasser, D. Vapor recompression for efficient distillation. 1. A new synthesis perspective on standard configurations. AIChE J 2013;59:2977–92. https://doi.org/10.1002/aic.14070.Suche in Google Scholar

13. Shi, P, Zhang, Q, Zeng, A, Ma, Y, Yuan, X. Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling azeotrope. Energy 2020;196:117095. https://doi.org/10.1016/j.energy.2020.117095.Suche in Google Scholar

14. Shi, L, Huang, K, Wang, SJ, Yu, J, Yuan, Y, Chen, H, et al.. Application of vapor recompression to heterogeneous azeotropic dividing-wall distillation columns. Ind Eng Chem Res 2015;54:11592–609. https://doi.org/10.1021/acs.iecr.5b02929.Suche in Google Scholar

15. Feng, Z, Shen, W, Rangaiah, GP, Dong, L. Design and control of vapor recompression assisted extractive distillation for separating n-hexane and ethyl acetate. Separ Purif Technol 2020;240:116655. https://doi.org/10.1016/j.seppur.2020.116655.Suche in Google Scholar

16. Wang, E, Yu, Z, Collings, P. Dynamic control strategy of a distillation system for a composition-adjustable organic Rankine cycle. Energy 2017;141:1038–51. https://doi.org/10.1016/j.energy.2017.09.141.Suche in Google Scholar

17. Stojkovic, M, Gerbaud, V, Shcherbakova, N. Cyclic operation as optimal control reflux policy of binary mixture batch distillation. Comput Chem Eng 2018;108:98–111. https://doi.org/10.1016/j.compchemeng.2017.09.004.Suche in Google Scholar

18. Zou, X, Cui, YH, Dong, HG, Wang, J, Grossmann, IE. Optimal design of complex distillation system for multicomponent zeotropic separations. Chem Eng Sci 2012;75:133–43. https://doi.org/10.1016/j.ces.2012.02.045.Suche in Google Scholar

19. Fanaei, MA, Dehghani, H, Nadi, S. Comparing and controlling of three batch distillation column configurations for separating tertiary zeotropic mixtures. Sci Iran 2012;19:1672–81. https://doi.org/10.1016/j.scient.2012.09.005.Suche in Google Scholar

20. Kumar, V, Kiran, B, Jana, AK, Samanta, AN. A novel multistage vapor recompression reactive distillation system with intermediate reboilers. AIChE J 2013;59:761–71. https://doi.org/10.1002/aic.13862.Suche in Google Scholar

21. Nair, RR, Raykar, A. Performance investigation of vapour recompressed batch distillation for separating ternary wide boiling constituents. Resour Efficient Technol 2017;3:452–8. https://doi.org/10.1016/j.reffit.2017.04.007.Suche in Google Scholar

22. Babu, GU, Pal, EK, Jana, AK. An adaptive vapor recompression scheme for a ternary batch distillation with a side withdrawal. Ind Eng Chem Res 2012;51:4990–7. https://doi.org/10.1021/ie201413p.Suche in Google Scholar

23. Luyben, WL. Multicomponent batch distillation. 1. Ternary systems with slop recycle. Ind Eng Chem Res 1988;27:642–7. https://doi.org/10.1021/ie00076a019.Suche in Google Scholar

24. Fileti, AF, Pereira Filho, RD, Pedrosa, LS, Pereira, AJ. A comparison of control strategies for batch distillation. IFAC Proc Vol 2000;33:617–22.10.1016/S1474-6670(17)38609-3Suche in Google Scholar

25. Alvarez-Ramirez, J, Monroy-Loperena, R, Cervantes, I, Morales, A. A novel proportional−integral-derivative control configuration with application to the control of batch distillation. Ind Eng Chem Res 2000;39:432–40. https://doi.org/10.1021/ie990287c.Suche in Google Scholar

26. Adari, PR, Jana, AK. Comparative control study of a high-purity ternary batch distillation. Chem Prod Process Model 2008;3. https://doi.org/10.2202/1934-2659.1174.Suche in Google Scholar

27. Babu, GU, Jana, AK. Impact of vapor recompression in batch distillation on energy consumption, cost and CO2 emission: open-loop versus closed-loop operation. Appl Therm Eng 2014;62:365–74.10.1016/j.applthermaleng.2013.09.057Suche in Google Scholar

28. Luyben, WL. Control comparison of conventional and thermally coupled ternary extractive distillation processes. Chem Eng Res Des 2016;106:253–62. https://doi.org/10.1016/j.cherd.2015.11.021.Suche in Google Scholar

29. Parhi, SS, Rangaiah, GP, Jana, AK. Optimizing reboiler duty and reflux ratio profiles of vapor recompressed batch distillation. Separ Purif Technol 2019;213:553–70. https://doi.org/10.1016/j.seppur.2018.12.066.Suche in Google Scholar

30. Cao, XQ, Yang, WW, Zhou, F, He, YL. Performance analysis of different high-temperature heat pump systems for low-grade waste heat recovery. Appl Therm Eng 2014;71:291–300. https://doi.org/10.1016/j.applthermaleng.2014.06.049.Suche in Google Scholar

31. Parhi, SS, Rangaiah, GP, Jana, AK. Multi-objective optimization of vapor recompressed distillation column in batch processing: improving energy and cost savings. Appl Therm Eng 2019;150:1273–96. https://doi.org/10.1016/j.applthermaleng.2019.01.073.Suche in Google Scholar

32. Luyben, WL. Improved control structure for extractive divided-wall column with vapor recompression. Chem Eng Res Des 2019;149:220–5. https://doi.org/10.1016/j.cherd.2019.07.010.Suche in Google Scholar

33. Aurangzeb, M, Jana, AK. Vapor recompression with interreboiler in a ternary dividing wall column: improving energy efficiency and savings, and economic performance. Appl Therm Eng 2019;147:1009–23. https://doi.org/10.1016/j.applthermaleng.2018.11.008.Suche in Google Scholar

34. Mokhatab, S, Poe, WA. Handbook of natural gas transmission and processing. Gulf Professional Publishing; 2012.10.1016/B978-0-12-386914-2.00003-0Suche in Google Scholar

35. Xu, L, Gao, L, Yin, X, Yuan, X. Improving performance of dividing wall column using multistage vapor recompression with intermediate reboiler. Chem Eng Res Des 2018;134:382–91. https://doi.org/10.1016/j.cherd.2018.04.023.Suche in Google Scholar

36. Xu, L, Li, M, Yin, X, Yuan, X. New intensified heat integration of vapor recompression assisted dividing wall column. Ind Eng Chem Res 2017;56:2188–96. https://doi.org/10.1021/acs.iecr.6b03802.Suche in Google Scholar

37. Bhaskar Babu, GU, Jana, AK. Reducing total annualized cost and CO2 emissions in batch distillation: dynamics and control. AIChE J 2013;59:2821–32. https://doi.org/10.1002/aic.14076.Suche in Google Scholar

38. Iwakabe, K, Nakaiwa, M, Huang, K, Nakanishi, T, Røsjorde, A, Ohmori, T, et al.. Energy saving in multicomponent separation using an internally heat-integrated distillation column (HIDiC). Appl Therm Eng 2006;26:1362–8. https://doi.org/10.1016/j.applthermaleng.2005.05.026.Suche in Google Scholar

39. Monroy-Loperena, R, Alvarez-Ramirez, J. A note on the identification and control of batch distillation columns. Chem Eng Sci 2003;58:4729–37. https://doi.org/10.1016/s0009-2509(03)00316-6.Suche in Google Scholar

40. Kano, M, Showchaiya, N, Hasebe, S, Hashimoto, I. Inferential control of distillation compositions: selection of model and control configuration. Contr Eng Pract 2003;11:927–33. https://doi.org/10.1016/s0967-0661(02)00215-0.Suche in Google Scholar

41. Seborg, DE, Mellichamp, DA, Edgar, TF, Doyle, FJIII. Process dynamics and control. John Wiley & Sons; 2010.Suche in Google Scholar

Received: 2020-05-11
Accepted: 2020-12-22
Published Online: 2021-01-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2020-0045/pdf?lang=de
Button zum nach oben scrollen