Startseite Assessment of Proportional Integral Derivative Control Loops for Large Dominant Time Constant Processes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Assessment of Proportional Integral Derivative Control Loops for Large Dominant Time Constant Processes

  • K. Ghousiya Begum EMAIL logo , A. Seshagiri Rao und T. K. Radhakrishnan
Veröffentlicht/Copyright: 2. August 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This manuscript deals with the assessment of parallel form of proportional integral derivative (PID) control structure for tracking the reference input designed for large dominant time constant processes whose dynamics are slow (integrating processes). The theoretical bound of integral absolute error (IAE) which is established for unstable first order process is extended to pure integrating process without using any approximations. This relies on direct synthesis tuning (DS) and the theoretical bound is obtained from the transfer function of closed loop system subjected to ramp input changes. An error based performance index is formulated on the basis of this IAE theoretical bound and actual IAE, to measure the behaviour of the controller employed for non self regulating (integrating) processes. This error based index evaluates the performance of closed loop controller and specifies whether the controller requires retuning or not. A sequence of simulated examples is used to illustrate the benefit and effectiveness of this new performance assessment method.

References

[1] Alfaro VM, Vilanova R. Robust tuning and performance analysis of 2DoF PI controllers for integrating controlled processes. Ind Eng Chem Res. 2012;51:13182–94.10.1021/ie300605wSuche in Google Scholar

[2] Chien I-L, Fruehauf PS. Consider IMC tuning to improve controller performance. Chem Eng Prog. 1990;86:33–41.Suche in Google Scholar

[3] Ali A, Majhi S. PID controller tuning for integrating processes. ISA Trans. 2010;49:70–8.10.1016/j.isatra.2009.09.001Suche in Google Scholar

[4] Vrančić D, Huba M, Oliveira PM. PID controller tuning for integrating processes. IFAC-PapersOnLine. 2018;51:586–91.10.1016/j.ifacol.2018.06.159Suche in Google Scholar

[5] Arbogast JE, Cooper DJ. Extension of IMC tuning correlations for non-self regulating (integrating) processes. ISA Trans. 2007;46:303–11.10.1016/j.isatra.2007.01.004Suche in Google Scholar

[6] Rao A, Chidambaram M. PI/PID controllers for integrating and unstable systems. In: Vilanova R, Visioli A, editor(s). PID control in the third millennium: lessons learned and new approaches. London: Springer-Verlag, 2012:75–111.10.1007/978-1-4471-2425-2_3Suche in Google Scholar

[7] Chidambaram M, Sree RP. A simple method of tuning PID controllers for integrator/dead-time processes. Comput Chem Eng. 2003;27:211–15.10.1016/S0098-1354(02)00178-3Suche in Google Scholar

[8] Vanavil B, Anusha AVNL, Perumalsamy M, Rao AS. Enhanced IMC-PID controller design with lead-lag filter for unstable and integrating processes with thime delay. Chem Eng Commun. 2014;201:1468–96.10.1080/00986445.2013.818983Suche in Google Scholar

[9] Hägglund T. Industrial implementation of on-line performance monitoring tools. Control Eng Pract. 2005;13:1383–90.10.1016/j.conengprac.2004.12.006Suche in Google Scholar

[10] Sendjaja AY, Kariwala V. Achievable PID performance using sums of squares programming. J Process Control. 2009;19:1061–5.10.1016/j.jprocont.2008.12.005Suche in Google Scholar

[11] Yu Z, Wang J, Huang B, Bi Z. Performance assessment of PID control loops subject to setpoint changes. J Process Control. 2011;21:1164–71.10.1016/j.jprocont.2011.06.012Suche in Google Scholar

[12] Veronesi M, Visioli A. Performance assessment and retuning of PID controllers. Ind Eng Chem Res. 2009;48:2616–23.10.1021/ie800812bSuche in Google Scholar

[13] Veronesi M, Visioli A. An industrial application of a performance assessment and retuning technique for PI controllers. ISA Trans. 2010;49:244–8.10.1016/j.isatra.2009.11.008Suche in Google Scholar PubMed

[14] Begum KG, Rao AS, Radhakrishnan TK. Performance assessment of control loops involving unstable systems for set point tracking and disturbance rejection. J Taiwan Inst Chem Eng. 2018;85:1–17.10.1016/j.jtice.2018.01.024Suche in Google Scholar

[15] Rao AS, Rao VSR, Chidambaram M. Direct synthesis-based controller design for integrating processes with time delay. J Franklin Inst. 2009;346:38–56.10.1016/j.jfranklin.2008.06.004Suche in Google Scholar

[16] Liu T, Cai YZ, Gu DY, Zhang WD. New modified Smith predictor scheme for integrating and unstable processes with time delay. IEE Proc - Control Theory Appl. 2005;152:238–46.10.1049/ip-cta:20041232Suche in Google Scholar

[17] Yu Z, Wang J. Assessment of proportional-integral control loop performance for input load disturbance rejection. Ind Eng Chem Res. 2012;51:11744–52.10.1021/ie300313gSuche in Google Scholar

[18] Liu T, Zhang W, Gu D. Analytical design of two-degree-of-freedom control scheme for open-loop unstable processes with time delay. J Process Control. 2005;15:559–72.10.1016/j.jprocont.2004.10.004Suche in Google Scholar

[19] Panda RC, Vijayan V, Sujatha V, Deepa P, Manamali D, Mandal AB. Parameter estimation of integrating and time delay processes using single relay feedback test. ISA Trans. 2011;50:529–37.10.1016/j.isatra.2011.06.004Suche in Google Scholar PubMed

Received: 2019-02-15
Revised: 2019-05-29
Accepted: 2019-07-06
Published Online: 2019-08-02

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2019-0024/pdf?lang=de
Button zum nach oben scrollen