Startseite An Adaptive Fuzzy Feedforward-Feedback Control System Applied to a Saccharification Process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An Adaptive Fuzzy Feedforward-Feedback Control System Applied to a Saccharification Process

  • Rodolpho Rodrigues Fonseca , Rafael Ribeiro Sencio , Ivan Carlos Franco und Flávio Vasconcelos Da Silva EMAIL logo
Veröffentlicht/Copyright: 10. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In industrial bioprocess control, disturbance sources typically influences process variable regulation. These disturbances may reduce a system control performance or even affect the final bioproduct quality. Therefore, feedforward control is desired because it anticipates the effects caused by these disturbances in an attempt to keep the process variable at the setpoint value. However, designing a feedforward control law requires process modeling, which can be a tough task when dealing with bioprocesses that are intrinsically nonlinear and multivariable systems. Thus, an adaptive feedforward control law or other advanced control system is needed for satisfactory disturbance rejection. For this reason, a general fuzzy feedforward control system is proposed in this paper to replace the classical feedforward control, making it easier to implement the feedforward control action by avoiding nonlinear and multivariable process modeling. The adaptive fuzzy feedforward-feedback (A4FB) system was applied to a product concentration control loop in an enzymatic reactor, to reject disturbances caused by variations in the substrate and enzymatic solutions feed concentration. The results showed that the A4FB controller rejected much more disturbance effects than classical feedforward control law, demonstrating its advantage, supported by not only its simple implementation, but also its improved disturbance rejection.

Acknowledgements

The authors appreciate the financial support provided by the Brazilian National Council for Scientific and Technological Development (CNPq).

References

[1] Stephanopoulos G. Chemical process control: an introduction to theory and practice. New Jersey: Prentice-Hall; 1984.Suche in Google Scholar

[2] Seborg DE, Edgar TF, Mellichamp DA. Process dynamics and control. New Jersey: John Wiley and Sons; 2011.Suche in Google Scholar

[3] Gúzman JL, Hägglund T. Simple tuning rules for feedforward compensators. J Process Control. 2011;21(1):92–102.10.1016/j.jprocont.2010.10.007Suche in Google Scholar

[4] Rodríguez C, Gúzman JL, Berenguel M, Hägglund T. Generalized feedforward tuning rules for non-realizable delay inversion. J Process Control. 2013;23(9):1241–50.10.1016/j.jprocont.2013.08.001Suche in Google Scholar

[5] Veronesi M, Visioli A. Automatic tuning of feedforward controllers for disturbance rejection. Ind Eng Chem Res. 2014;53(7):2764–70.10.1021/ie403089fSuche in Google Scholar

[6] Gúzman JL, Hägglund T, Veronesi M, Visioli A. Performance indices for feedforward control. J Process Control. 2015;26:26–34.10.1016/j.jprocont.2014.12.004Suche in Google Scholar

[7] Chen L, Nguang SK, Chen XD, Li XM. Modelling and optimization of fed-batch fermentation processes using dynamic neural networks and genetic algorithms. Biochem Eng J. 2004;22(1):51–61.10.1016/j.bej.2004.07.012Suche in Google Scholar

[8] Ashoori A, Moshiri B, Khaki-Sedigh A, Bakhtiari MR. Optimal control of a nonlinear fed-batch fermentation process using model predictive approach. J Process Control. 2009;19(7):1162–73.10.1016/j.jprocont.2009.03.006Suche in Google Scholar

[9] Zhao Z, Cui H, Zhang J, Sun AJ. Adaptive fuzzy control for synchronization of coronary artery system with input nonlinearity. IEEE Access. 2018;6:7082–87.10.1109/ACCESS.2017.2779118Suche in Google Scholar

[10] Honda H, Kobayashi T. Fuzzy control of bioprocesses. J Biosci Bioeng. 2000;89(5):401–08.10.1016/S1389-1723(00)89087-8Suche in Google Scholar PubMed

[11] Horiuchi J-I, Kishimoto M. Application of fuzzy control to industrial bioprocesses in Japan. Fuzzy Sets Syst. 2002;128(1):117–24.10.1016/S0165-0114(01)00090-2Suche in Google Scholar

[12] Horiuchi J-I. Fuzzy modeling and control of biological processes. J Biosci Bioeng. 2002;94(6):574–78.10.1016/S1389-1723(02)80197-9Suche in Google Scholar PubMed

[13] Gadkar KG, Mehra S, Gomes J. On-line adaptation of neural networks for bioprocess control. Comput. Chem. Eng. 2005;29(5):1047–57.10.1016/j.compchemeng.2004.11.004Suche in Google Scholar

[14] Li H, Gatland HB. Convetional fuzzy control and its enhancement. IEEE Trans. Syst., Man, Cybern B, Cybern. 1996;26(5):791–96.10.1109/3477.537321Suche in Google Scholar

[15] Wakabayashi C, Embiruçu M, Fontes C, Kalid R. Fuzzy control of a nylon polymerization semi-batch reactor. Fuzzy Set Syst. 2009;160:537–53.10.1016/j.fss.2008.08.009Suche in Google Scholar

[16] Eker I, Torun Y. Fuzzy logic control to be a conventional method. Energy Convers Manage. 2006;47(4):377–94.10.1016/j.enconman.2005.05.008Suche in Google Scholar

[17] Precup R-E, Hellendoorn H. A survey on industrial applications of fuzzy control. Comput Ind. 2011;62(3):213–26.10.1016/j.compind.2010.10.001Suche in Google Scholar

[18] Babuska R, Oosterhoff J, Oudshoorn A, Bruijn PM. Fuzzy self-tuning PI control of pH in fermentation. Eng Appl Artif Intell. 2002;15(1):3–15.10.1016/S0952-1976(02)00003-9Suche in Google Scholar

[19] Fonseca RR, Schmitz JE, Fileti AMF, Silva FV. A fuzzy-split range control system applied to a fermentation process. Bioresour Technol. 2013;142:475–82.10.1016/j.biortech.2013.05.083Suche in Google Scholar PubMed

[20] Fonseca RR, Fileti AMF, Franco IC, Silva FV. Experimental fuzzy/split-range control: novel strategy for biodiesel batch reactor temperature control. Chem. Eng. Commun. 2016;203(9):1251–59.10.1080/00986445.2016.1172484Suche in Google Scholar

[21] Wang L, Basin M, Li H, Lu R. Observer-based composite adaptive fuzzy control for nonstrict-feedback systems with actuator failures. IEEE Trans. Fuzzy Syst. 2017. DOI: 10.1109/TFUZZ.2017.2774185,Suche in Google Scholar

[22] Sun K, Sui S, Tong S. Fuzzy adaptive decentralized optimal control for strict feedback nonlinear large-scale systems. IEEE Trans Cybern. 2017;48(4):1326 –39.10.1109/TCYB.2017.2692384Suche in Google Scholar PubMed

[23] Sui S, Tong S. Fuzzy adaptive quantized output feedback tracking control for switched nonlinear systems with input quantization. Fuzzy Set Syst. 2018;290:56–78.10.1016/j.fss.2015.07.012Suche in Google Scholar

[24] Li Y, Sun K, Tong S. Observer-based adaptive fuzzy fault-tolerant optimal control for SISO nonlinear systems. IEEE Trans Cybern. 2018. DOI: 10.1109/TCYB.2017.2785801,Suche in Google Scholar PubMed

[25] Ochoa S, Repke J-U, Wozny G. Integrating real-time optimization and control for optimal operation: application to the bio-ethanol process. Chem. Eng. J. 2010;53(1):18–25.10.1016/j.bej.2009.01.005Suche in Google Scholar

[26] Ochoa S, Wozny G, Repke J-U. Plantwide optimizing control of a continuous bioethanol production process. J Process Control. 2010;20(9):983–98.10.1016/j.jprocont.2010.06.010Suche in Google Scholar

[27] Polakovič M, Bryjak J. Modelling of potato starch saccharification by an Aspergillus niger glucoamylase. Biochem Eng J. 2004;18(1):57–63.10.1016/S1369-703X(03)00164-5Suche in Google Scholar

[28] Reznik L. Fuzzy controllers. Oxford: Newnes: Butterworth-Heinemann, 1997Suche in Google Scholar

Received: 2018-03-28
Revised: 2018-06-26
Accepted: 2018-06-27
Published Online: 2018-07-10

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2018-0014/pdf?lang=de
Button zum nach oben scrollen