Startseite Critical Modeling & Exergy Analysis of Multi Phase Change Materials Storage System
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Critical Modeling & Exergy Analysis of Multi Phase Change Materials Storage System

  • Seyedalireza Hosseininasab und Ebrahim Nemati Lay EMAIL logo
Veröffentlicht/Copyright: 28. Juli 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Using the phase change materials (PCMs) can help to store thermal energy as latent heat method in the multi PCMs storage system. In this research study, an analytical model has been developed for solar thermal storage system. An especial shell and tube heat exchanger is considered to heat exchange purpose. Double pipes have been used as tubes and PCMs allocated on the shell side of the double pipes for the heat exchanger. The hot heat transfer fluid (HTF) flows across the tube banks to charge the thermal energy storage system during the charging cycle. The thermal energy absorbed in PCMs while the HFT temperature reduced in the charging process. The heat exchanger tube length is function of HTF residence time then the equivalent length is defined in the presented model. The validity of the proposed model has been checked by comparison between the analytical results and numerical data obtained before using CFD simulation. The result shows that required times to melt of the PCMs for the presented study has the consistency of about 0.928 with CFD results in different PCMs melting percentages. Also the required time to melt of the PCMs for the presented study has the consistency of 0.915 with CFD results in different air inlet temperatures. Therefore the presented model can predict the system behavior also can apply for cascaded PCMs storage systems for exergy analysis.

Appendix (A)

The eq. (4) could be derived based on the following methods:

(1) Step by step method to predict equation for n PCMs:

(1–1) Energy analysis of the PCM in the system with single PCM (i = 1)

The energy QP1 stored to the PCM as:

QP1=hP1AP1ΔTLMT1,2tP1

Where:

ΔTLMT1,2=(Thtf1Thtf2)Ln(Thtf1Tm1Thtf2Tm1)

Also:

QP1=mhtfCp1,2(Thtf1Thtf2)tP1

Then:

(40)Thtf2=Tm1+(Thtf1Tm1)exp(Nc1)

Where:

Nc1=hP1AP1mhtfCp1,2

(1–2) Energy analysis of the PCMs in the system with two PCMs (i = 2)

The energy QP1 and QP2 stored to the PCM1 and PCM2 respectively, so:

QP2=hP2AP2ΔTLMT2,3tP2

Where:

ΔTLMT2,3=(Thtf2Thtf3)Ln(Thtf2Tm2Thtf3Tm2)s

Also:

QP2=mhtfCp2,3(Thtf2Thtf3)tP2

Then:

Thtf3=Tm2+(Thtf2Tm2)exp(Nc2)

Where:

Nc2=hP2AP2mhtfCp2,3

By using the eq. (40), we have:

(41)Thtf3=Tm2+(Tm1Tm2)exp(Nc2)+(Thtf1Tm1)exp(Nc1Nc2)

(1–3) Energy analysis of the PCMs in the system with three PCMs (i = 3)

The energyQP1, QP2and QP3 stored to the PCM1, PCM2 and PCM3 respectively, so:

QP3=hP3AP3ΔTLMT3,4tP3

Where:

ΔTLMT3,4=(Thtf3Thtf4)Ln(Thtf3Tm3Thtf4Tm3)

Also:

QP3=mhtfCp3,4(Thtf3Thtf4)tP3

Then:

Thtf4=Tm3+(Thtf3Tm3)exp(Nc3)

Where:

Nc3=hP3AP3mhtfCp3,4

By using the eq. (41), we have:

(42)Thtf4=Tm3+(Tm2Tm3)exp(Nc3)+(Tm1Tm2)exp(Nc2Nc3)+(Thtf1Tm1)exp(Nc1Nc2Nc3)

(1–4) Energy analysis of the PCMs in the system with n PCMs (i = n)

The energyQP1, QP2, …, QPn stored to the PCM1, PCM2, …, PCMn respectively, so:

We guess the relation for in the system with n PCMs as:

By using the eq. (41), we have:

(43)Thtfn+1=Tmn+(Tmn1Tmn)exp(Ncn)+(Tmn2Tmn1)exp(i=n1nNci)+(Tmn3Tmn2)exp(i=n2nNci)+...+(Tm1Tm2)exp(i=2nNci)+(Thtf1Tm1)exp(i=1nNci)

Where:

Nc3=hP3AP3mhtfCp3,4

The eq. (43) is eq. (4). which is mentioned in the paper. We have to prove the validation of eq. (43) for n PCMs.

We use mathematical induction method to prove the equation validity.

(2) Mathematical induction method to prove the equation validity:

(2–1) we verify the eq. (43) for single PCM (n = 1):

It is clear that:

Tm0=Tm1=Tm2==0

Also:

Nc0=Nc1=Nc2==0

Therefore:

Thtf2=Tm1+(Thtf1Tm1)exp(Nc1)

(2–2) According to mathematical induction method, we assume the eq. (43) is valid for k PCM (n = k).

So, we have:

(44)Thtfk+1=Tmk+(Tmk1Tmk)exp(Nck)+(Tmk2Tmk1)exp(i=k1kNci)+(Tmk3Tmk2)exp(i=k2kNci)+...+(Tm1Tm2)exp(i=2kNci)+(Thtf1Tm1)exp(i=1kNci)

(2–3) Now, we have to prove/confirm the eq. (43) validity for k + 1 PCM (n = k + 1).

Energy analysis of the PCMs in the system with k + 1 PCMs:

The energyQP1, QP2, …, QPk+1 stored to the PCM1, PCM2, …, PCMk + 1 respectively, so:

QPk+1=hPk+1APk+1ΔTLMTk+1,k+2tPk+1

Where:

ΔTLMTk+1,k+2=(Thtfk+1Thtfk+2)Ln(Thtfk+1Tmk+1Thtfk+2Tmk+1)

Also:

QPk+1=mhtfCpk+1,k+2(Thtfk+1Thtfk+2)tPk+1

Then:

(45)Thtfk+2=Tmk+1+(Thtfk+1Tmk+1)exp(Nck+1)

Where:

Nck+1=hPk+1APk+1mhtfCpk+1,k+2

By using the eq. (44) and eq. (45), we have:

Thtfk+2=Tmk+1+(TmkTmk+1)exp(Nck+1)+(Tmk1Tmk)exp(Nck+1Nck)+(Tmk2Tmk1)exp(Nck+1i=k1kNci)+(Tmk3Tmk2)exp(Nck+1i=k2kNci)+...+(Tm1Tm2)exp(Nck+1i=2kNci)+(Thtf1Tm1)exp(Nck+1i=1kNci)

Rewrite the last equation:

Thtfk+2=Tmk+1+(TmkTmk+1)exp(Nck+1)+(Tmk1Tmk)exp(i=kk+1Nci)+(Tmk2Tmk1)exp(i=k1k+1Nci)+(Tmk3Tmk2)exp(i=k2k+1Nci)+...+(Tm1Tm2)exp(i=2k+1Nci)+(Thtf1Tm1)exp(i=1k+1Nci)

The last equation is eq. (43) for k + 1 PCM (n = k + 1).

Therefore, we prove the eq. (43) validity for k + 1 PCM (n = k + 1).

References

[1] Sharma SD, Kitano H, Sagara K. Phase change materials for low temperature solar thermal applications. Res Rep Fac Eng Mie Univ. 2004;29:31–64.Suche in Google Scholar

[2] Zalba B, Jose Maria M, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl Therm Eng. 2002;23(3):251–283.10.1016/S1359-4311(02)00192-8Suche in Google Scholar

[3] Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renewable Sustainable Energy Rev. 2007;11(9):1913–1965.10.1016/j.rser.2006.05.005Suche in Google Scholar

[4] Jegadheeswaran S, Pohekar SD. Performance enhancement in latent heat thermal storage system: a review. Renewable Sustainable Energy Rev. 2009;13(9):2225–2244.10.1016/j.rser.2009.06.024Suche in Google Scholar

[5] Kenisarin MM. High-temperature phase change materials for thermal energy storage. Renewable Sustainable Energy Rev. 2010;14(3):955–970.10.1016/j.rser.2009.11.011Suche in Google Scholar

[6] Dincer I. The role of exergy in energy policy making references. Energy Policy. 2002;30(2):137–149.10.1016/S0301-4215(01)00079-9Suche in Google Scholar

[7] Watanabe T, Kanzawa A. Second law optimization of a latent heat storage system with PCMs having different melting points. Heat Recovery Syst CHP. 1995;15(7):641–653.10.1016/0890-4332(95)90044-6Suche in Google Scholar

[8] Jegadheeswaran S, Pohekar SD, Kousksou T. Exergy based performance evaluation of latent heat thermal storage system: a review. Renewable Sustainable Energy Rev. 2010;14(9):2580–2595.10.1016/j.rser.2010.07.051Suche in Google Scholar

[9] Farid M, Kanzawa A. Thermal performance of heat storage module using PCM s with different melting temperatures: mathematical modelling. J Solar Energy Eng, Trans ASME. 1989;111(May):152–157.10.1115/1.3268301Suche in Google Scholar

[10] Farid M, Kim Y, Kanzawa A. Thermal performance of a heat storage module using PCM’s with different melting temperatures: experimental. J Sol Energy Eng. 1990;112:125–131.10.1115/1.2929644Suche in Google Scholar

[11] Gong Z-X, Mujumdar AS. A new solar receiver thermal store for space-based activities using multiple composite phase-change materials. J Solar Energy Eng. 1995;117(3):215–220.10.1115/1.2847798Suche in Google Scholar

[12] Gong Z, Mujumdar AS. Cyclic heat transfer in a novel storage unit of multiple phase change materials. Appl Thermal Eng. 1996;16(10):807–815.10.1016/1359-4311(95)00088-7Suche in Google Scholar

[13] Gong ZX, Mujumdar AS. Enhancement of energy charge-discharge rates in composite slabs of different phase change materials. Int J Heat Mass Transf. 1996;39(4):725–733.10.1016/0017-9310(95)00179-4Suche in Google Scholar

[14] Gong Z-X, Mujumdar AS. Thermodynamic optimization of the thermal process in energy storage using multiple phase change materials. Appl Thermal Eng. 1997;17(11):1067–1083.10.1016/S1359-4311(97)00012-4Suche in Google Scholar

[15] Domanski R, Fellah G. Exergy analysis for the evaluation of a thermal storage system employing PCMS with different melting temperatures. Appl Thermal Eng. 1996;16:907–919.10.1016/1359-4311(96)00003-8Suche in Google Scholar

[16] Aceves SM, Nakamura H, Reistad GM, Martinez-Frias J. Optimization of a class of latent thermal energy storage systems with multiple phase-change materials. J Solar Energy Eng, Trans ASME. 1998;120(1):14–19.10.1115/1.2888040Suche in Google Scholar

[17] Wang J, Chen G, Zheng FEI. Study on phase change temperature distributions of composite PCMs in thermal energy storage systems. Int J Energy Res. 1999;23:277–285.10.1002/(SICI)1099-114X(19990325)23:4<277::AID-ER475>3.0.CO;2-QSuche in Google Scholar

[18] Wang J, Chen G, Jiang H. Theoretical study on a novel phase change process. Int J Energy Res. 1999;23(4):287–294.10.1002/(SICI)1099-114X(19990325)23:4<287::AID-ER476>3.0.CO;2-KSuche in Google Scholar

[19] Cui H, Yuan X, Hou X. Thermal performance analysis for a heat receiver using multiple phase change materials. Appl Thermal Eng. 2003;23(18):2353–2361.10.1016/S1359-4311(03)00210-2Suche in Google Scholar

[20] Kousksou T, Strub F, Castaing Lasvignottes J, Jamil A, Bedecarrats JP. Second law analysis of latent thermal storage for solar system. Solar Energy Materials Solar Cells. 2007;91(14):1275–1281.10.1016/j.solmat.2007.04.029Suche in Google Scholar

[21] Seeniraj RV, Lakshmi Narasimhan N. Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Solar Energy. 2008;82(6):535–542.10.1016/j.solener.2007.11.001Suche in Google Scholar

[22] Shabgard H, Robak CW, Bergman TL, Faghri A. Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications. Solar Energy. 2012;86(3):816–830.10.1016/j.solener.2011.12.008Suche in Google Scholar

[23] Fang M, Chen G. Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl Thermal Eng. 2007;27(5–6):994–1000.10.1016/j.applthermaleng.2006.08.001Suche in Google Scholar

[24] Tian Y, Zhao CY. Thermal and exergetic analysis of Metal Foam-enhanced Cascaded Thermal Energy Storage (MF-CTES). Int J Heat Mass Transf. 2013;58(1–2):86–96.10.1016/j.ijheatmasstransfer.2012.11.034Suche in Google Scholar

[25] Li Y-Q, He Y-L, Wang Z-F, Xu C, Wang W. Exergy analysis of two phase change materials storage system for solar thermal power with finite-time thermodynamics. Renewable Energy. 2012;39(1):447–454.10.1016/j.renene.2011.08.026Suche in Google Scholar

[26] Tao YB, He YL, Liu YK, Tao WQ. Performance optimization of two-stage latent heat storage unit based on entransy theory. Int J Heat Mass Transf. 2014;77:695–703.10.1016/j.ijheatmasstransfer.2014.05.049Suche in Google Scholar

[27] Aldoss TK, Rahman MM. Comparison between the single-PCM and multi-PCM thermal energy storage design. Energy Convers Manage. 2014;83:79–87.10.1016/j.enconman.2014.03.047Suche in Google Scholar

[28] Xu HJ, Zhao CY. Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model. Renewable Energy. 2016;86:228–237.10.1016/j.renene.2015.08.007Suche in Google Scholar

[29] Ezra M, Kozak Y, Dubovsky V, Ziskind G. Analysis and optimization of melting temperature span for a multiple-PCM latent heat thermal energy storage unit. Applied Thermal Eng. 2016;93:315–329.10.1016/j.applthermaleng.2015.09.040Suche in Google Scholar

[30] Xu Y, He Y-L, Li Y-Q, Song H-J. Exergy analysis and optimization of charging–discharging processes of latent heat thermal energy storage system with three phase change materials. Solar Energy. 2016;123:206–216.10.1016/j.solener.2015.09.021Suche in Google Scholar

[31] Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable Sustainable Energy Rev. 2010;14(2):615–628.10.1016/j.rser.2009.10.015Suche in Google Scholar

[32] Al-Abidi AA, Bin Mat S, Sopian K, Sulaiman MY, Mohammed AT. CFD applications for latent heat thermal energy storage: A review. Renewable Sustainable Energy Rev. Elsevier. 2013;20:353–363.10.1016/j.rser.2012.11.079Suche in Google Scholar

[33] Li YQ, He YL, Song HJ, Xu C, Wang WW. Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials. Renewable Energy. 2013;59:92–99.10.1016/j.renene.2013.03.022Suche in Google Scholar

[34] Xiao X, Zhang P. Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part I – Charging process. Energy. 2015;79(C):337–350.10.1016/j.energy.2014.11.020Suche in Google Scholar

[35] Fornarelli F, Camporeale SM, Fortunato B, Torresi M, Oresta P, Magliocchetti L, et al. CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants. Appl Energy. 2016;164:711–722.10.1016/j.apenergy.2015.11.106Suche in Google Scholar

[36] Almsater S, AlemuAlemu SW, Bruno F. Development and experimental validation of a CFD model for PCM in a vertical triplex tube heat exchanger. Appl Thermal Eng. Elsevier Ltd. 2017;116:344–354.10.1016/j.applthermaleng.2017.01.104Suche in Google Scholar

[37] Smith JM, Van Ness HC, Abbott MM. Introduction to chemical engineering thermodynamics, 7th ed. New York: McGraw Hill. Chemical Engineering Series [chapters 2 and 6] 2015.Suche in Google Scholar

Published Online: 2017-7-28

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2017-0029/pdf?lang=de
Button zum nach oben scrollen