Home Frontmatter
Article Publicly Available

Frontmatter

Published/Copyright: March 8, 2016
Become an author with De Gruyter Brill

Published Online: 2016-3-8
Published in Print: 2016-3-7

© 2016 by De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. Editorial Note
  3. Editorial Special Issue: Selected Extended Papers from the 12th International Conference on Membrane Science and Technology (MST2015) Symposium on Modeling and Simulation
  4. Research Articles
  5. Molecular Perspective of Radionuclides Separation by Nanoporous Graphene Oxide Membrane
  6. Mathematical Modeling and Investigation on the Temperature and Pressure Dependency of Permeation and Membrane Separation Performance for Natural gas Treatment
  7. Mathematical Modeling of Natural Gas Separation Using Hollow Fiber Membrane Modules by Application of Finite Element Method through Statistical Analysis
  8. Modelling Study of Palladium Membrane Reactor Performance during Methan Steam Reforming using CFD Method
  9. Performance Investigation of Membrane Process in Natural Gas sweeting by Membrane Process: Modeling Study
  10. Gas Separation in Nanoporous Graphene from Molecular Dynamics Simulation
  11. The Effect of Module Geometry on Heat and Mass Transfer in Membrane Distillation
  12. Experimental Study and Numerical Simulation of the Air Gap Membrane Distillation (AGMD) Process
  13. Multi-objective Optimization of Preparation Conditions of Asymmetric Polyetherimide Membrane for Prevaporation of Isopropanol
  14. Investigation of Palladium Membrane Reactor Performance during Ethanol Steam Reforming using CFD Method
  15. Designing Better Membrane Modules Using CFD
  16. Simulation of Membrane Gas Separation Process Using Aspen Plus® V8.6
  17. Numerical Simulation of Salt Water Passing Mechanism Through Nanoporous Single-Layer Graphene Membrane
  18. Facilitated Transport of Propylene Through Composite Polymer-Ionic Liquid Membranes. Mass Transfer Analysis
  19. CFD Simulation of Hydrogen Separation in Pd Hollow Fiber Membrane
  20. Numerical Study on Concentration Polarization for H2-N2 Separation through a Thin Pd Membrane by Using Computational Fluid Dynamics
Downloaded on 30.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cppm-2016-frontmatter1/html
Scroll to top button