Abstract
This review article gives a comprehensive account of the extraction of actinide ions using room temperature ionic liquid-based solvent systems containing diglycolamide (DGA) or functionalized DGA extractants. These extractants include multiple DGA-functionalized ligands such as tripodal DGA (T-DGA) and DGA-functionalized calix [4]arenes (C4DGA). Apart from metal ion extraction behaviour, other important features of the ionic liquid-based solvent systems such as separation behaviour, luminescence spectroscopic results, thermodynamics of extraction and radiolytic stability of the ionic liquid-based solvents are also reviewed. Results from studies on DGA-functionalized task-specific ionic liquids (TSIL) are also included in this review article.
Acknowledgements
The author gratefully acknowledges the encouragement provided by Dr A. Goswami, Head, Radiochemistry Division.
References
1. RogersRD, SeddonKR. Ionic liquids: industrial applications to green chemistry. ACS symposium series 818. Washington, DC: American Chemical Society, 2005.Suche in Google Scholar
2. WeingärtnerH. Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed2008;47:654–70.10.1002/anie.200604951Suche in Google Scholar PubMed
3. KolarikZ. Ionic liquids: how far do they extend the potential of solvent extraction of f-elements?Solvent Extr Ion Exc2013;31:24–60.10.1080/07366299.2012.700589Suche in Google Scholar
4. WeltonT. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev1999;99:2071–83.10.1021/cr980032tSuche in Google Scholar PubMed
5. EarleJ, SeddonKR. Ionic liquids, green solvents for the future. Pure Appl Chem2000;72:1391.10.1351/pac200072071391Suche in Google Scholar
6. OhnoH, editor. Electrochemical aspects of ionic liquids. Hoboken: Wiley-Interscience, 2005.10.1002/0471762512Suche in Google Scholar
7. BakerGA, BakerSN, PandeyS, BrightFV. An analytical view of ionic liquids. Analyst2005;130:800–8.10.1039/b500865bSuche in Google Scholar PubMed
8. WaldenP. Molecular weights and electrical conductivity of several fused salts. Bull Russ Acad Sci1914;8:405–22.Suche in Google Scholar
9. RogersRD, SeddonKR. Ionic liquids: solvents of the future? Science2003;302:792–3.10.1126/science.1090313Suche in Google Scholar PubMed
10. HuddlestonJG, WillauerHD, SwatloskiRP, VisserAE, RogersRD. Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem Commun1998;1765–6.10.1039/A803999BSuche in Google Scholar
11. SwatloskiRP, HolbreyJD, RogersRD. Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem2003;5:361–3.10.1039/b304400aSuche in Google Scholar
12. JensenMP, DzielawaJA, RickertP, DietzML. EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid. J Am Chem Soc2002;124:10664–5.10.1021/ja027476ySuche in Google Scholar PubMed
13. HanX, ArmstrongDW. Ionic liquids in separations. Acc Chem Res2007;40:1079–86.10.1021/ar700044ySuche in Google Scholar PubMed
14. KubotaF, GotoM. Application of ionic liquids to solvent extraction. Solvent Extr Res Develop Jpn2006;13:23–36.Suche in Google Scholar
15. DietzML. Ionic liquids as extraction solvents: where do we stand? Sep Sci Technol2006;41:2047–63.10.1080/01496390600743144Suche in Google Scholar
16. ZhaoH, XiaS, MaP. Use of ionic liquids as ‘green’ solvents for extractions. J Chem Technol Biotechnol2005;80:1089–96.10.1002/jctb.1333Suche in Google Scholar
17. BinnemansK. Lanthanides and actinides in ionic liquids. Chem Rev2007;107:2592–614.10.1021/cr050979cSuche in Google Scholar PubMed
18. SunX, LuoH, DaiS. Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev2012;112:2100–28.10.1021/cr200193xSuche in Google Scholar PubMed
19. BillardI, OuadiA, GaillardC. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding. Anal Bioanal Chem2011;400:1555–66.10.1007/s00216-010-4478-xSuche in Google Scholar PubMed
20. BillardI, BünzliJ-CG,PecharskyVK.Ionic liquids: new hopes for efficient lanthanide/actinide extraction and separation? In: Handbook on the physics and chemistry of rare earths. Vol. 43, Chapter 256. Amsterdam: Elsevier Science, 2013:213–73.Suche in Google Scholar
21. GreskyT,BruceFR. The separation of U-233 and Thorium from fission products by solvent extraction. In: Progress in nuclear energy, series 111, Process chemistry, Vol. 1. New York: McGraw-Hill, 1956.Suche in Google Scholar
22. NaylorA, WilsonPD. Recovery of Uranium and Plutonium from Irradiated Nuclear Fuel. In: LoTC, BairdMH, HansonC, editors. Handbook of solvent extraction. New York, USA: John Wiley & Sons, 1983:783.Suche in Google Scholar
23. AnsariSA, PathakPN, MohapatraPK, ManchandaVK. Aqueous Partitioning of Minor Actinides by Different Processes. Sep Purif Rev2011;40:41–73.10.1080/15422119.2010.545466Suche in Google Scholar
24. AnsariSA, PathakPN, MohapatraPK, ManchandaVK. Chemistry of Diglycolamides: Promising Extractants for Actinide Partitioning. Chem Rev2012;112:1751–77.10.1021/cr200002fSuche in Google Scholar PubMed
25. MathurJN, MuraliMS, NashKL. Actinide partitioning – a review. Solvent Extr Ion Exc2001;19:357–90.10.1081/SEI-100103276Suche in Google Scholar
26. AnsariSA, PrabhuDR, GujarRB, KanekarAS, RajeswariB, KulkarniMJ, et al. Counter-current extraction of uranium and lanthanides from simulated high-level waste using N,N,N′,N′-tetraoctyl diglycolamide. Sep Purif Technol2009;66:118–24.10.1016/j.seppur.2008.11.019Suche in Google Scholar
27. GujarRB, AnsariSA, PrabhuDR, PathakPN, SenguptaA, ThulasidasSK, et al. Actinide partitioning with a modified TODGA solvent: counter-current extraction studies with simulated high level waste. Solvent Extr Ion Exc2012;30:156–70.10.1080/07366299.2011.609392Suche in Google Scholar
28. ModoloG, AspH, SchreinemachersC, VijgenV. Development of a TODGA based process for partitioning of actinides from a PUREX raffinate part I: batch extraction optimization studies and stability tests. Solvent Extr Ion Exc2007;25:703–21.10.1080/07366290701634578Suche in Google Scholar
29. ShenY, TanX, WangL, WuW. Extraction of the uranyl ion from the aqueous phase into an ionic liquid by diglycolamide. Sep Purif Technol2011;78:298–302.10.1016/j.seppur.2011.01.042Suche in Google Scholar
30. ShenY, WangS, ZhuL, WangJ, WuW. Extraction of Th(IV) from an HNO3 solution by diglycolamide in ionic liquids. Ind Eng Chem Res2011;50:13990–6.10.1021/ie102512mSuche in Google Scholar
31. ZhuZX, SasakiY, SuzukiH, SuzukiS, KimuraT. Cumulative study on solvent extraction of elements by N,N,N’,N’-tetraoctyl-3-oxapentanediamide (TODGA) from nitric acid into n-dodecane. Anal Chim Acta2004;527:163–8.10.1016/j.aca.2004.09.023Suche in Google Scholar
32. MincherME, QuachDL, LiaoYJ, MincherBJ, WaiCM. The partitioning of americium and the lanthanides using tetrabutyl diglycolamide (TBDGA) in octanol and in ionic liquid solution. Solvent Extr Ion Exc2012;30:735–47.10.1080/07366299.2012.700583Suche in Google Scholar
33. ShimojoK, KurahashiK, NaganawaH. Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids. Dalton Trans2008;5083–8.10.1039/b810277pSuche in Google Scholar PubMed
34. PanjaS, MohapatraPK, TripathiSC, GandhiPM, JanardanP. A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction. Sep Purif Technol2012;96:289–95.10.1016/j.seppur.2012.06.015Suche in Google Scholar
35. HuangX, ZhangQ, LiuJ, HeH, ZhuW, WangX. Solvent extraction of Pu(IV) with TODGA in C6mimTf2N. J Radioanal Nucl Chem2013;298:41–6.10.1007/s10967-013-2439-5Suche in Google Scholar
36. AnsariSA, PathakPN, ManchandaVK, HussainM, PrasadA, ParmarVS. N,N,N0,N0-tetraoctyl diglycolamide (TODGA): A promising extractant for actinide-partitioning from high-level waste (HLW). Solvent Extr Ion Exc2005;23:463–79.10.1081/SEI-200066296Suche in Google Scholar
37. SasakiY, SugoY, SuzukiS, TachimoriS. The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3–n-dodecane system. Solvent Extr Ion Exc2001;19:91–103.10.1081/SEI-100001376Suche in Google Scholar
38. GujarRB, AnsariSA, MuraliMS, MohapatraPK, ManchandaVK. J Radioanal Nucl Chem. Comparative evaluation of two substituted diglycolamide extractants for ‘actinide partitioning’ 2010;284:377–385.Suche in Google Scholar
39. PrathibhaT, VenkatesanKA, Robert SelvanB, AntonyMP, Vasudeva RaoPR. Anomalous extraction behavior of Americium(III) in some diglycolamide isomers present in ionic liquid medium. Radiochim Acta2012;100:907–13.10.1524/ract.2012.1982Suche in Google Scholar
40. ZhangY, LiuZ, FanF, ZhuL, ShenY. Extraction of Uranium and Thorium from Nitric Acid Solution by TODGA in Ionic Liquids. Sep Sci Technol2014;49:1895–902.10.1080/01496395.2014.903279Suche in Google Scholar
41. JanczewskiD, ReinhoudtDN, VerboomW, HillC, AllignolC, DuchesneMT. Tripodal diglycolamides as highly efficient extractants for f-elements. New J Chem2008;32:490–5.10.1039/B715671ESuche in Google Scholar
42. MohapatraPK, IqbalM, RautDR, VerboomW, HuskensJ, GodboleSV. Complexation of novel diglycolamide functionalized calix[4]arenes: Unusual extraction behaviour, transport, and fluorescence studies. Dalton Trans2012;41:360–3.10.1039/C1DT11561HSuche in Google Scholar
43. SenguptaA, MohapatraPK, IqbalM, HuskensJ, VerboomW. A highly efficient solvent system containing functionalized diglycolamides and an ionic liquid for americium recovery from radioactive wastes. Dalton Trans2012;41:6970–9.10.1039/c2dt12364aSuche in Google Scholar PubMed
44. MohapatraPK, SenguptaA, IqbalM, HuskensJ, VerboomW. Diglycolamide-functionalized calix[4]arenes showing unusual complexation of actinide ions in room temperature ionic liquids: role of ligand structure, radiolytic stability, emission spectroscopy, and thermodynamic studies. Inorg Chem2013;52:2533–41.10.1021/ic302497kSuche in Google Scholar PubMed
45. MohapatraPK, SenguptaA, IqbalM, HuskensJ, GodboleSV, VerboomW. Remarkable acidity independent actinide extraction with a both-side diglycolamide-functionalized calix[4]arene. Dalton Trans2013;42:8558–62.10.1039/c3dt50557jSuche in Google Scholar PubMed
46. SenguptaA, MohapatraPK, IqbalM, VerboomW, HuskensJ, GodboleSV. Extraction of Am(III) using novel solvent systems containing a tripodal diglycolamide ligand in room temperature ionic liquids: a ‘green’ approach for radioactive waste processing. RSC Adv2012;2:7492–500.10.1039/c2ra20577gSuche in Google Scholar
47. TohSL, McFarlaneJ, TsourisC, DePaoliDW, LuoH, DaiS. Room temperature ionic liquids in liquid–liquid extraction: effects of solubility in aqueous solutions on surface properties. Solvent Extr Ion Exc2006;24:33–56.10.1080/07366290500388400Suche in Google Scholar
48. VisserE, SwatloskiRP, ReichertWM, MaytonR, SheffS, WierzbickiA, et al. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem Commun2001;135–6.10.1039/b008041lSuche in Google Scholar
49. VisserAE, SwatloskiRP, ReichertWM, MaytonR, SheffS, WierzbickiA, et al. Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: synthesis, characterization, and extraction studies. Environ Sci Technol2002;36:2523–9.10.1021/es0158004Suche in Google Scholar PubMed
50. MohapatraPK, SenguptaA, IqbalM, HuskensJ, VerboomW. Highly efficient diglycolamide-based task-specific ionic liquids: synthesis, unusual extraction behaviour, irradiation, and fluorescence studies. Chem Eur J2013;19:3230–8.10.1002/chem.201203321Suche in Google Scholar PubMed
51. SenguptaA, MohapatraPK, IqbalM, HuskensJ, VerboomW. A diglycolamide-functionalized task specific ionic liquid (TSIL) for actinide extraction: solvent extraction, thermodynamics and radiolytic stability studies. Sep Purif Technol2013;118:264–70.10.1016/j.seppur.2013.07.005Suche in Google Scholar
52. MohapatraPK, KandwalP, IqbalM, HuskensJ, MuraliMS, VerboomW. A novel CMPO-functionalized task specific ionic liquid: synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes. Dalton Trans2013;42:4343–7.10.1039/c3dt32967dSuche in Google Scholar PubMed
53. Bonnaffé-MoityM, OuadiA, MazanV, MiroshnichenkoS, TernovaD, GeorgS, et al. Comparison of uranyl extraction mechanisms in an ionic liquid by use of malonamide or malonamide-functionalized ionic liquid. Dalton Trans2012;41:7526–36.10.1039/c2dt12421aSuche in Google Scholar PubMed
54. WuY, ZhangY, FanF, LuoH, HuP, ShenY. Synthesis of task-specific ionic liquids with grafted diglycolamide moiety. Complexation and stripping of lanthanides. J Radioanal Nucl Chem2014;299:1213–18.10.1007/s10967-013-2878-zSuche in Google Scholar
55. SenguptaA, GodboleSV, MohapatraPK, IqbalM, HuskensJ, VerboomW. Judd–Ofelt parameters of diglycolamide-functionalized calix[4]arene Eu3+ complexes in room temperature ionic liquid for structural analysis: effects of solvents and ligand stereochemistry. J Luminescence2014;148:174–80.10.1016/j.jlumin.2013.12.009Suche in Google Scholar
56. SenguptaA, MohapatraPK, IqbalM, HuskensJ, VerboomW. Spectroscopic investigations of Eu3+ – complexes with ligands containing multiple diglycolamide pendant arms in a room temperature ionic liquid. J Luminescence2014;154:392–401.10.1016/j.jlumin.2014.05.001Suche in Google Scholar
57. PathakPN, AnsariSA, GodboleSV, DhobaleAR, ManchandaVK. Interaction of Eu3+with N,N,N’,N’-tetraoctyl diglycolamide: A time resolved luminescence spectroscopy study. Spectrochim Acta2009;A73:348.10.1016/j.saa.2009.02.040Suche in Google Scholar PubMed
58. NashKL, ChoppinGR. The thermodynamics of synergistic solvent extraction of zinc(II). J Inorg Nucl Chem1977;39:131.10.1016/0022-1902(77)80447-8Suche in Google Scholar
59. GurneyRW. Ionic processes in solution. New York: McGraw-Hill, 1953.Suche in Google Scholar
60. SenguptaA, MohapatraPK, KadamRM, MannaD, GhantyTK, IqbalM, et al. Diglycolamide-functionalized task specific ionic liquids for nuclear waste remediation: extraction, luminescence, theoretical and EPR investigations. RSC Adv2014;4:46613–23.10.1039/C4RA05798HSuche in Google Scholar
61. SpinksJW, WoodsRJ. Introduction to radiation chemistry. New York: Wiley Interscience, 1990.Suche in Google Scholar
62. AllenD, BastonG, BradelyAE, GormanT,HaileA,HamblettI. et al. An investigation of the radiochemical stability of ionic liquids. Green Chem2002;4:152 2002.10.1039/b111042jSuche in Google Scholar
63. BeharD, GonzalezC, NetaP. Reaction Kinetics in Ionic Liquids: Pulse Radiolysis Studies of 1-Butyl-3-methylimidazolium Salts. J Phys Chem A2001;105:7607.10.1021/jp011405oSuche in Google Scholar
64. MarcinekA, ZielonkaJ, GebickiJ, GordonCM, DunkinIR. Ionic Liquids: Novel Media for Characterization of Radical Ions. J Phys Chem A2001;105:9305.10.1021/jp0117718Suche in Google Scholar
65. BerthonL, NikitenkoSI, BiselI, BerthonC, FauconM, SaucerotteB, et al. Influence of gamma irradiation on hydrophobic room- temperature ionic liquids [BuMeIm]PF6 and [BuMeIm](CF3SO2)2N. Dalton Trans2006;2526–34.10.1039/b601111jSuche in Google Scholar PubMed
66. Jagadeeswara RaoCH, VenkatesanKA, TataBV, NagarajanK, SrinivasanTG, Vasudeva RaoPR. Radiation stability of some room temperature ionic liquids. Radiat Phys Chem2011;80:643–9.10.1016/j.radphyschem.2011.01.012Suche in Google Scholar
67. YuanL, PengJ, XuL, ZhaiM, LiJ, WeiG. Influence of γ-radiation on the ionic liquid [C4mim][PF6] during extraction of strontium ions. Dalton Trans2008;6358–60.10.1039/b811413gSuche in Google Scholar PubMed
68. NakashimaK, KubotaF, MaruyamaT, GotoM. Feasibility of ionic liquids as alternative separation media for industrial solvent extraction processes. Ind Eng Chem Res2005;44:4368–72.10.1021/ie049050tSuche in Google Scholar
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Transesterification of Castor Oil with Methanol – Kinetic Modelling
- Hybrid Particle Swarm Optimization and Ant Colony Optimization Technique for the Optimal Design of Shell and Tube Heat Exchangers
- Determination of Enthalpy of Pyrolysis from DSC and Industrial Reactor Data: Case of Tires
- Modeling of a UASB Reactor by NARX Networks for Biogas Production
- Optimization of Biodiesel Ultrasound-Assisted Synthesis from Castor Oil Using Response Surface Methodology (RSM)
- Review
- Diglycolamide-Based Solvent Systems in Room Temperature Ionic Liquids for Actinide Ion Extraction: A Review
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Transesterification of Castor Oil with Methanol – Kinetic Modelling
- Hybrid Particle Swarm Optimization and Ant Colony Optimization Technique for the Optimal Design of Shell and Tube Heat Exchangers
- Determination of Enthalpy of Pyrolysis from DSC and Industrial Reactor Data: Case of Tires
- Modeling of a UASB Reactor by NARX Networks for Biogas Production
- Optimization of Biodiesel Ultrasound-Assisted Synthesis from Castor Oil Using Response Surface Methodology (RSM)
- Review
- Diglycolamide-Based Solvent Systems in Room Temperature Ionic Liquids for Actinide Ion Extraction: A Review