Abstract
FE65 is a brain-enriched, developmentally regulated adaptor protein that was first identified as a binding partner of amyloid precursor protein (APP), an important molecule in Alzheimer’s disease. FE65 possesses three protein interaction domains, including an N-terminal WW domain and two C-terminal phosphotyrosine-binding (PTB) domains. It is capable of mediating the assembly of multimolecular complexes. Although initial work reveals its roles in APP processing and gene transactivation, increasing evidence suggests that FE65 participates in more diverse biological processes than originally anticipated. This article discusses the role of FE65 in signal transduction during cell stress and protein turnover through the ubiquitin-proteasome system and in various neuronal processes, including neurogenesis, neuronal migration and positioning, neurite outgrowth, synapse formation and synaptic plasticity, learning, and memory.
References
1. Esposito, F., Ammendola, R., Duilio, A., Costanzo, F., Giordano, M., Zambrano, N., D'Agostino, P., Russo, T. and Cimino, F. Isolation of cDNA fragments hybridizing to rat brain-specific mRNAs. Dev. Neurosci. 12 (1990) 373-381.Search in Google Scholar
2. Duilio, A., Zambrano, N., Mogavero, A.R., Ammendola, R., Cimino, F. and Russo, T. A rat brain mRNA encoding a transcriptional activator homologous to the DNA binding domain of retroviral integrases. Nucleic Acids Res. 19 (1991) 5269-5274.Search in Google Scholar
3. Fiore, F., Zambrano, N., Minopoli, G., Donini, V., Duilio, A. and Russo, T. The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer's amyloid precursor protein. J. Biol. Chem. 270 (1995) 30853-30856.Search in Google Scholar
4. Bressler, S.L., Gray, M.D., Sopher, B.L., Hu, Q., Hearn, M.G., Pham, D.G., Dinulos, M.B., Fukuchi, K., Sisodia, S.S., Miller, M.A., Disteche, C.M. and Martin, G.M. cDNA cloning and chromosome mapping of the human Fe65 gene: interaction of the conserved cytoplasmic domains of the human betaamyloid precursor protein and its homologues with the mouse Fe65 protein. Hum. Mol. Genet. 5 (1996) 1589-1598.Search in Google Scholar
5. Borg, J.P., Ooi, J., Levy, E. and Margolis, B. The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol. Cell. Biol. 16 (1996) 6229-6241.Search in Google Scholar
6. McLoughlin, D.M. and Miller, C.C. The intracellular cytoplasmic domain of the Alzheimer's disease amyloid precursor protein interacts with phosphotyrosine-binding domain proteins in the yeast two-hybrid system. FEBS Lett. 397 (1996) 197-200.Search in Google Scholar
7. Guenette, S.Y., Chen, J., Jondro, P.D. and Tanzi, R.E. Association of a novel human FE65-like protein with the cytoplasmic domain of the betaamyloid precursor protein. Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 10832-10837.Search in Google Scholar
8. Duilio, A., Faraonio, R., Minopoli, G., Zambrano, N. and Russo, T. Fe65L2: a new member of the Fe65 protein family interacting with the intracellular domain of the Alzheimer's beta-amyloid precursor protein. Biochem. J. 330 (1998) 513-519.Search in Google Scholar
9. Tanahashi, H. and Tabira, T. Molecular cloning of human Fe65L2 and its interaction with the Alzheimer's beta-amyloid precursor protein. Neurosci. Lett. 261 (1999) 143-146.Search in Google Scholar
10. Tanahashi, H. and Tabira, T. Characterization of an amyloid precursor protein-binding protein Fe65L2 and its novel isoforms lacking phosphotyrosine-interaction domains. Biochem. J. 367 (2002) 687-695. DOI: 10.1042/BJ20020562BJ20020562 [pii].Search in Google Scholar
11. Guenette, S., Chang, Y., Hiesberger, T., Richardson, J.A., Eckman, C.B., Eckman, E.A., Hammer, R.E. and Herz, J. Essential roles for the FE65 amyloid precursor protein-interacting proteins in brain development. EMBO J. 25 (2006) 420-431. DOI: 7600926 [pii]10.1038/sj.emboj.7600926.Search in Google Scholar
12. Meiyappan, M., Birrane, G. and Ladias, J.A. Structural basis for polyproline recognition by the FE65 WW domain. J. Mol. Biol. 372 (2007) 970-980. DOI: S0022-2836(07)00871-6 [pii]10.1016/j.jmb.2007.06.064.Search in Google Scholar
13. Radzimanowski, J., Ravaud, S., Schlesinger, S., Koch, J., Beyreuther, K., Sinning, I. and Wild, K. Crystal structure of the human Fe65-PTB1 domain. J. Biol. Chem. 283 (2008) 23113-23120. DOI: 10.1074/ jbc.M800861200M800861200 [pii]. Search in Google Scholar
14. Radzimanowski, J., Simon, B., Sattler, M., Beyreuther, K., Sinning, I. and Wild, K. Structure of the intracellular domain of the amyloid precursor protein in complex with Fe65-PTB2. EMBO Rep. 9 (2008) 1134-1140. DOI: 10.1038/embor.2008.188 embor2008188 [pii].10.1038/embor.2008.188Search in Google Scholar PubMed PubMed Central
15. McLoughlin, D.M. and Miller, C.C. The FE65 proteins and Alzheimer's disease. J. Neurosci. Res. 86 (2008) 744-754. DOI: 10.1002/jnr.21532.10.1002/jnr.21532Search in Google Scholar PubMed
16. Borquez, D.A. and Gonzalez-Billault, C. The amyloid precursor protein intracellular domain-fe65 multiprotein complexes: a challenge to the amyloid hypothesis for Alzheimer's disease? Int. J. Alzheimer's Dis. 2012 (2012) 353145. DOI: 10.1155/2012/353145.10.1155/2012/353145Search in Google Scholar PubMed PubMed Central
17. Ermekova, K.S., Zambrano, N., Linn, H., Minopoli, G., Gertler, F., Russo, T. and Sudol, M. The WW domain of neural protein FE65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila enabled. J. Biol. Chem. 272 (1997) 32869-32877.Search in Google Scholar
18. Sabo, S.L., Ikin, A.F., Buxbaum, J.D. and Greengard, P. The Alzheimer amyloid precursor protein (APP) and FE65, an APP-binding protein, regulate cell movement. J. Cell Biol. 153 (2001) 1403-1414.Search in Google Scholar
19. Zambrano, N., Bruni, P., Minopoli, G., Mosca, R., Molino, D., Russo, C., Schettini, G., Sudol, M. and Russo, T. The beta-amyloid precursor protein APP is tyrosine-phosphorylated in cells expressing a constitutively active form of the Abl protoncogene. J. Biol. Chem. 276 (2001) 19787-19792. DOI: 10.1074/jbc.M100792200M100792200 [pii].Search in Google Scholar
20. Perkinton, M.S., Standen, C.L., Lau, K.F., Kesavapany, S., Byers, H.L., Ward, M., McLoughlin, D.M. and Miller, C.C. The c-Abl tyrosine kinase phosphorylates the Fe65 adaptor protein to stimulate Fe65/amyloid precursor protein nuclear signaling. J. Biol. Chem. 279 (2004) 22084-22091. DOI: 10.1074/jbc.M311479200M311479200 [pii].Search in Google Scholar
21. Telese, F., Bruni, P., Donizetti, A., Gianni, D., D'Ambrosio, C., Scaloni, A., Zambrano, N., Rosenfeld, M.G. and Russo, T. Transcription regulation by the adaptor protein Fe65 and the nucleosome assembly factor SET. EMBO Rep. 6 (2005) 77-82. DOI: 7400309 [pii]10.1038/sj.embor.7400309.Search in Google Scholar
22. Masin, M., Kerschensteiner, D., Dumke, K., Rubio, M.E. and Soto, F. Fe65 interacts with P2X2 subunits at excitatory synapses and modulates receptor function. J. Biol. Chem. 281 (2006) 4100-4108. DOI: M507735200 [pii]10.1074/jbc.M507735200.Search in Google Scholar
23. Lee, E.J., Hyun, S., Chun, J., Shin, S.H., Lee, K.E., Yeon, K.H., Park, T.Y. and Kang, S.S. The PPLA motif of glycogen synthase kinase 3beta is required for interaction with Fe65. Mol. Cells 26 (2008) 100-105. DOI: 94 [pii].Search in Google Scholar
24. Lee, E.J., Hyun, S., Chun, J., Shin, S.H. and Kang, S.S. Ubiquitylation of Fe65 adaptor protein by neuronal precursor cell expressed developmentally down regulated 4-2 (Nedd4-2) via the WW domain interaction with Fe65. Exp. Mol. Med. 41 (2009) 555-568. DOI: 10.3858/emm.2009.41.8.061 10.3858/emm.2009.41.8.061Search in Google Scholar PubMed PubMed Central
25. Chow, W.N., Luk, H.W., Chan, H.Y. and Lau, K.F. Degradation of mutant huntingtin via the ubiquitin/proteasome system is modulated by FE65. Biochem. J. 443 (2012) 681-689. DOI: BJ20112175 [pii]10.1042/BJ20112175.Search in Google Scholar
26. Lee, E.J., Hyun, S.H., Chun, J. and Kang, S.S. Human NIMA-related kinase 6 is one of the Fe65 WW domain binding proteins. Biochem. Biophys. Res. Commun. 358 (2007) 783-788. DOI: S0006-291X(07)00926-6 [pii]10.1016/j.bbrc.2007.04.203.Search in Google Scholar
27. Zambrano, N., Minopoli, G., de Candia, P. and Russo, T. The Fe65 adaptor protein interacts through its PID1 domain with the transcription factor CP2/LSF/LBP1. J. Biol. Chem. 273 (1998) 20128-20133.Search in Google Scholar
28. Kim, H.S., Kim, E.M., Lee, J.P., Park, C.H., Kim, S., Seo, J.H., Chang, K.A., Yu, E., Jeong, S.J., Chong, Y.H. and Suh, Y.H. C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3beta expression. FASEB J. 17 (2003) 1951-1953. DOI: 10.1096/fj.03-0106fje03-0106fje [pii].Search in Google Scholar
29. Trommsdorff, M., Borg, J.P., Margolis, B. and Herz, J. Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273 (1998) 33556-33560.Search in Google Scholar
30. Kinoshita, A., Whelan, C.M., Smith, C.J., Mikhailenko, I., Rebeck, G.W., Strickland, D.K. and Hyman, B.T. Demonstration by fluorescence resonance energy transfer of two sites of interaction between the low-density lipoprotein receptor-related protein and the amyloid precursor protein: role of the intracellular adapter protein Fe65. J. Neurosci. 21 (2001) 8354-8361.Search in Google Scholar
31. Pietrzik, C.U., Yoon, I.S., Jaeger, S., Busse, T., Weggen, S. and Koo, E.H. FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J. Neurosci. 24 (2004) 4259-4265. DOI: 10.1523/JNEUROSCI.5451-03.200424/17/4259 [pii].Search in Google Scholar
32. Cao, X. and Sudhof, T.C. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293 (2001) 115-120. DOI: 10.1126/science.1058783293/5527/115 [pii].Search in Google Scholar
33. Stante, M., Minopoli, G., Passaro, F., Raia, M., Vecchio, L.D. and Russo, T. Fe65 is required for Tip60-directed histone H4 acetylation at DNA strand breaks. Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 5093-5098. DOI: 10.1073/pnas.0810869106 0810869106 [pii].10.1073/pnas.0810869106Search in Google Scholar PubMed PubMed Central
34. Barbato, C., Canu, N., Zambrano, N., Serafino, A., Minopoli, G., Ciotti, M.T., Amadoro, G., Russo, T. and Calissano, P. Interaction of Tau with Fe65 links tau to APP. Neurobiol. Dis. 18 (2005) 399-408. DOI: S0969-9961(04)00243-8 [pii]10.1016/j.nbd.2004.10.011.Search in Google Scholar
35. Hoe, H.S., Magill, L.A., Guenette, S., Fu, Z., Vicini, S. and Rebeck, G.W. FE65 interaction with the ApoE receptor ApoEr2. J. Biol. Chem. 281 (2006) 24521-24530. DOI: M600728200 [pii]10.1074/jbc.M600728200. Search in Google Scholar
36. Kajiwara, Y., Akram, A., Katsel, P., Haroutunian, V., Schmeidler, J., Beecham, G., Haines, J.L., Pericak-Vance, M.A. and Buxbaum, J.D. FE65 binds Teashirt, inhibiting expression of the primate-specific caspase-4. PLoS One 4 (2009) e5071. DOI: 10.1371/journal.pone.0005071.10.1371/journal.pone.0005071Search in Google Scholar PubMed PubMed Central
37. Dumanis, S.B., Chamberlain, K.A., Sohn, Y.J., Lee, Y.J., Guenette, S.Y., Suzuki, T., Mathews, P.M., Pak, D.T., Rebeck, G.W., Suh, Y.H., Park, H.S. and Hoe, H.S. FE65 as a link between VLDLR and APP to regulate their trafficking and processing. Mol. Neurodegener. 7 (2012) 9. DOI: 1750-1326-7-9 [pii]10.1186/1750-1326-7-9.Search in Google Scholar
38. Cheung, H.N., Dunbar, C., Morotz, G.M., Cheng, W.H., Chan, H.Y., Miller, C.C. and Lau, K.F. FE65 interacts with ADP-ribosylation factor 6 to promote neurite outgrowth. FASEB J. (2013). DOI: fj.13-232694 [pii]10.1096/fj.13-232694.Search in Google Scholar
39. Sumioka, A., Nagaishi, S., Yoshida, T., Lin, A., Miura, M. and Suzuki, T. Role of 14-3-3gamma in FE65-dependent gene transactivation mediated by the amyloid beta-protein precrsor cytoplasmic fragment. J. Biol. Chem. 280 (2005) 42364-42374. DOI: M504278200 [pii]10.1074/jbc.M504278200.Search in Google Scholar
40. Zambrano, N., Buxbaum, J.D., Minopoli, G., Fiore, F., De Candia, P., De Renzis, S., Faraonio, R., Sabo, S., Cheetham, J., Sudol, M. and Russo, T. Interaction of the phosphotyrosine interaction/phosphotyrosine bindingrelated domains of Fe65 with wild-type and mutant Alzheimer's betaamyloid precursor proteins. J. Biol. Chem. 272 (1997) 6399-6405.Search in Google Scholar
41. Bao, J., Cao, C., Zhang, X., Jiang, F., Nicosia, S.V. and Bai, W. Suppression of beta-amyloid precursor protein signaling into the nucleus by estrogens mediated through complex formation between the estrogen receptor and Fe65. Mol. Cell. Biol. 27 (2007) 1321-1333. DOI: MCB.01280-06 [pii]10.1128/MCB.01280-06.Search in Google Scholar
42. Sun, Y., Kasiappan, R., Tang, J., Webb, P.L., Quarni, W., Zhang, X. and Bai, W. A Novel Function of the Fe65 Neuronal Adaptor in Estrogen Receptor Action in Breast Cancer Cells. J. Biol. Chem. (2014). DOI: M113.526194 [pii] 10.1074/jbc.M113.526194.Search in Google Scholar
43. Lau, K.F., Chan, W.M., Perkinton, M.S., Tudor, E.L., Chang, R.C., Chan, H.Y., McLoughlin, D.M. and Miller, C.C. Dexras1 interacts with FE65 to regulate FE65-amyloid precursor protein-dependent transcription. J. Biol. Chem. 283 (2008) 34728-34737. DOI: M801874200 [pii]10.1074/ jbc.M801874200.Search in Google Scholar
44. Araki, Y., Miyagi, N., Kato, N., Yoshida, T., Wada, S., Nishimura, M., Komano, H., Yamamoto, T., De Strooper, B., Yamamoto, K. and Suzuki, T. Coordinated metabolism of Alcadein and amyloid beta-protein precursor regulates FE65-dependent gene transactivation. J. Biol. Chem. 279 (2004) 24343-24354. DOI: 10.1074/jbc.M401925200M401925200 [pii].Search in Google Scholar
45. Kwon, O.Y., Hwang, K., Kim, J.A., Kim, K., Kwon, I.C., Song, H.K. and Jeon, H. Dab1 binds to Fe65 and diminishes the effect of Fe65 or LRP1 on APP processing. J. Cell Biochem. 111 (2010) 508-519. DOI: 10.1002/jcb.22738.10.1002/jcb.22738Search in Google Scholar PubMed
46. Alvira-Botero, X., Perez-Gonzalez, R., Spuch, C., Vargas, T., Antequera, D., Garzon, M., Bermejo-Pareja, F. and Carro, E. Megalin interacts with APP and the intracellular adapter protein FE65 in neurons. Mol. Cell. Neurosci. 45 (2010) 306-315. DOI: 10.1016/j.mcn.2010.07.005S1044-7431(10)00169-7 [pii].Search in Google Scholar
47. Wang, P.L., Niidome, T., Kume, T., Akaike, A., Kihara, T. and Sugimoto, H. Functional and molecular interactions between Rac1 and FE65. Neuroreport 22 (2011) 716-720. DOI: 10.1097/ WNR.0b013e32834aca9d00001756-201110050-00010 [pii].10.1097/WNR.0b013e32834aca9dSearch in Google Scholar PubMed
48. Kim, M.Y., Mo, J.S., Ann, E.J., Yoon, J.H. and Park, H.S. Dual regulation of notch1 signaling pathway by adaptor protein fe65. J. Biol. Chem. 287 (2012) 4690-4701. DOI: M111.289637 [pii]10.1074/jbc.M111.289637.Search in Google Scholar
49. Rebelo, S., Domingues, S.C., Santos, M., Fardilha, M., Esteves, S.L., Vieira, S.I., Vintem, A.P., Wu, W., da Cruz, E.S.E.F. and da Cruz, E.S.O.A. Identification of a novel complex AbetaPP:Fe65:PP1 that regulates AbetaPP Thr668 phosphorylation levels. J. Alzheimers Dis. 35 (2013) 761-775. DOI: 10.3233/JAD-130095R255316787607178 [pii].Search in Google Scholar
50. Schrotter, A., Mastalski, T., Nensa, F.M., Neumann, M., Loosse, C., Pfeiffer, K., Magraoui, F.E., Platta, H.W., Erdmann, R., Theiss, C., Uszkoreit, J., Eisenacher, M., Meyer, H.E., Marcus, K. and Muller, T. FE65 regulates and interacts with the Bloom syndrome protein in dynamic nuclear spheres - potential relevance to Alzheimer's disease. J. Cell Sci. 126 (2013) 2480-2492. DOI: 10.1242/jcs.121004jcs.121004 [pii].Search in Google Scholar
51. Nensa, F.M., Neumann, M.H., Schrotter, A., Przyborski, A., Mastalski, T., Susdalzew, S., Loobetae, C., Helling, S., El Magraoui, F., Erdmann, R., Meyer, H.E., Uszkoreit, J., Eisenacher, M., Suh, J., Guenette, S.Y., Rohner, N., Kogel, D., Theiss, C., Marcus, K. and Muller, T. Amyloid beta a4 precursor protein-binding family B member 1 (FE65) interactomics revealed synaptic vesicle glycoprotein 2A (SV2A) and sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) as new binding proteins in the human brain. Mol. Cell Proteomics 13 (2014) 475-488. DOI: 10.1074/ mcp.M113.029280M113.029280 [pii].Search in Google Scholar
52. Kinoshita, A., Whelan, C.M., Berezovska, O. and Hyman, B.T. The gamma secretase-generated carboxyl-terminal domain of the amyloid precursor protein induces apoptosis via Tip60 in H4 cells. J. Biol. Chem. 277 (2002) 28530-28536. DOI: 10.1074/jbc.M203372200M203372200 [pii].Search in Google Scholar
53. Nakaya, T., Kawai, T. and Suzuki, T. Regulation of FE65 nuclear translocation and function by amyloid beta-protein precursor in osmotically stressed cells. J. Biol. Chem. 283 (2008) 19119-19131. DOI: 10.1074/jbc.M801827200M801827200 [pii].Search in Google Scholar
54. Minopoli, G., Stante, M., Napolitano, F., Telese, F., Aloia, L., De Felice, M., Di Lauro, R., Pacelli, R., Brunetti, A., Zambrano, N. and Russo, T. Essential roles for Fe65, Alzheimer amyloid precursor-binding protein, in the cellular response to DNA damage. J. Biol. Chem. 282 (2007) 831-835. DOI: C600276200 [pii]10.1074/jbc.C600276200.Search in Google Scholar
55. Roos, W.P. and Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med. 12 (2006) 440-450. DOI: S1471-4914(06)00168-7 [pii] 10.1016/j.molmed.2006.07.007.Search in Google Scholar
56. Nakaya, T., Kawai, T. and Suzuki, T. Metabolic stabilization of p53 by FE65 in the nuclear matrix of osmotically stressed cells. FEBS J. 276 (2009) 6364-6374. DOI: EJB7349 [pii]10.1111/j.1742-4658.2009.07349.x.10.1111/j.1742-4658.2009.07349.xSearch in Google Scholar PubMed
57. Ma, Q.H., Futagawa, T., Yang, W.L., Jiang, X.D., Zeng, L., Takeda, Y., Xu, R.X., Bagnard, D., Schachner, M., Furley, A.J., Karagogeos, D., Watanabe, K., Dawe, G.S. and Xiao, Z.C. A TAG1-APP signalling pathway through Fe65 negatively modulates neurogenesis. Nat. Cell Biol. 10 (2008) 283-294. DOI: 10.1038/ncb1690ncb1690 [pii].Search in Google Scholar
58. Forni, P.E., Fornaro, M., Guenette, S. and Wray, S. A role for FE65 in controlling GnRH-1 neurogenesis. J. Neurosci. 31 (2011) 480-491. DOI: 10.1523/JNEUROSCI.4698-10.201131/2/480 [pii].Search in Google Scholar
59. Ruan, L., Lau, B.W., Wang, J., Huang, L., Zhuge, Q., Wang, B., Jin, K. and So, K.F. Neurogenesis in neurological and psychiatric diseases and brain injury: from bench to bedside. Prog. Neurobiol. 115 (2014) 116-137. DOI: 10.1016/j.pneurobio.2013.12.006S0301-0082(13)00146-9 [pii].Search in Google Scholar
60. Ghosal, K., Stathopoulos, A. and Pimplikar, S.W. APP intracellular domain impairs adult neurogenesis in transgenic mice by inducing neuroinflammation. PLoS One 5 (2010) e11866. DOI: 10.1371/ journal.pone.0011866.Search in Google Scholar
61. Sabo, S.L., Ikin, A.F., Buxbaum, J.D. and Greengard, P. The amyloid precursor protein and its regulatory protein, FE65, in growth cones and synapses in vitro and in vivo. J. Neurosci. 23 (2003) 5407-5415. DOI: 23/13/5407 [pii].Search in Google Scholar
62. Ikin, A.F., Sabo, S.L., Lanier, L.M. and Buxbaum, J.D. A macromolecular complex involving the amyloid precursor protein (APP) and the cytosolic adapter FE65 is a negative regulator of axon branching. Mol. Cell. Neurosci. 35 (2007) 57-63. DOI: S1044-7431(07)00028-0 [pii]10.1016/j.mcn.2007.02.003.Search in Google Scholar
63. Zambrano, N., Bimonte, M., Arbucci, S., Gianni, D., Russo, T. and Bazzicalupo, P. feh-1 and apl-1, the Caenorhabditis elegans orthologues of mammalian Fe65 and beta-amyloid precursor protein genes, are involved in the same pathway that controls nematode pharyngeal pumping. J. Cell Sci. 115 (2002) 1411-1422.Search in Google Scholar
64. Rusu, P., Jansen, A., Soba, P., Kirsch, J., Lower, A., Merdes, G., Kuan, Y.H., Jung, A., Beyreuther, K., Kjaerulff, O. and Kins, S. Axonal accumulation of synaptic markers in APP transgenic Drosophila depends on the NPTY motif and is paralleled by defects in synaptic plasticity. Eur. J. Neurosci. 25 (2007) 1079-1086. DOI: EJN5341 [pii]10.1111/j.1460-9568.2007.05341.x. 10.1111/j.1460-9568.2007.05341.xSearch in Google Scholar PubMed
65. Wang, Y., Zhang, M., Moon, C., Hu, Q., Wang, B., Martin, G., Sun, Z. and Wang, H. The APP-interacting protein FE65 is required for hippocampusdependent learning and long-term potentiation. Learn. Mem. 16 (2009) 537-544. DOI: 16/9/537 [pii]10.1101/lm.1499309.Search in Google Scholar
66. Kesavapany, S., Banner, S.J., Lau, K.F., Shaw, C.E., Miller, C.C., Cooper, J.D. and McLoughlin, D.M. Expression of the Fe65 adapter protein in adult and developing mouse brain. Neuroscience 115 (2002) 951-960. DOI: S0306452202004220 [pii].Search in Google Scholar
67. Wang, B., Hu, Q., Hearn, M.G., Shimizu, K., Ware, C.B., Liggitt, D.H., Jin, L.W., Cool, B.H., Storm, D.R. and Martin, G.M. Isoform-specific knockout of FE65 leads to impaired learning and memory. J. Neurosci. Res. 75 (2004) 12-24. DOI: 10.1002/jnr.10834.10.1002/jnr.10834Search in Google Scholar
68. Hu, Q., Hearn, M.G., Jin, L.W., Bressler, S.L. and Martin, G.M. Alternatively spliced isoforms of FE65 serve as neuron-specific and nonneuronal markers. J. Neurosci. Res. 58 (1999) 632-640. DOI: 10.1002/(SICI)1097-4547(19991201)58:5<632::AID-JNR4>3.0.CO;2-P [pii].10.1002/(SICI)1097-4547(19991201)58:5<632::AID-JNR4>3.0.CO;2-PSearch in Google Scholar
69. O'Brien, R.J. and Wong, P.C. Amyloid precursor protein processing and Alzheimer's disease. Annu. Rev. Neurosci. 34 (2011) 185-204. DOI: 10.1146/annurev-neuro-061010-113613.10.1146/annurev-neuro-061010-113613Search in Google Scholar
70. Domingues, S.C., Henriques, A.G., Fardilha, M., da Cruz, E.S.E.F. and da Cruz, E.S.O.A. Identification and characterization of a neuronal enriched novel transcript encoding the previously described p60Fe65 isoform. J. Neurochem. 119 (2011) 1086-1098. DOI: 10.1111/j.1471-4159.2011.07420.x.10.1111/j.1471-4159.2011.07420.xSearch in Google Scholar
71. Cool, B.H., Zitnik, G., Martin, G.M. and Hu, Q. Structural and functional characterization of a novel FE65 protein product up-regulated in cognitively impaired FE65 knockout mice. J. Neurochem. 112 (2010) 410-419. DOI: 10.1111/j.1471-4159.2009.06456.xJNC6456 [pii].Search in Google Scholar
72. Standen, C.L., Perkinton, M.S., Byers, H.L., Kesavapany, S., Lau, K.F., Ward, M., McLoughlin, D. and Miller, C.C. The neuronal adaptor protein Fe65 is phosphorylated by mitogen-activated protein kinase (ERK1/2). Mol. Cell. Neurosci. 24 (2003) 851-857. DOI: S1044743103002562 [pii].Search in Google Scholar
73. Trinidad, J.C., Barkan, D.T., Gulledge, B.F., Thalhammer, A., Sali, A., Schoepfer, R. and Burlingame, A.L. Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol. Cell Proteomics 11 (2012) 215-229. DOI: 10.1074/mcp.O112.018366O112.018366 [pii].Search in Google Scholar
74. Raijmakers, R., Kraiczek, K., de Jong, A.P., Mohammed, S. and Heck, A.J. Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Anal. Chem. 82 (2010) 824-832. DOI: 10.1021/ac901764g. 10.1021/ac901764gSearch in Google Scholar
75. Huttlin, E.L., Jedrychowski, M.P., Elias, J.E., Goswami, T., Rad, R., Beausoleil, S.A., Villen, J., Haas, W., Sowa, M.E. and Gygi, S.P. A tissuespecific atlas of mouse protein phosphorylation and expression. Cell 143 (2010) 1174-1189. DOI: 10.1016/j.cell.2010.12.001S0092-8674(10)01379-6 [pii].Search in Google Scholar
76. Lee, E.J., Chun, J., Hyun, S., Ahn, H.R., Jeong, J.M., Hong, S.K., Hong, J.T., Chang, I.K., Jeon, H.Y., Han, Y.S., Auh, C.K., Park, J.I. and Kang, S.S. Regulation Fe65 localization to the nucleus by SGK1 phosphorylation of its Ser566 residue. BMB Rep. 41 (2008) 41-47.Search in Google Scholar
77. Tweedie-Cullen, R.Y., Reck, J.M. and Mansuy, I.M. Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J. Proteome Res. 8 (2009) 4966-4982. DOI: 10.1021/pr9003739. 10.1021/pr9003739Search in Google Scholar
© 2015 University of Wrocław, Poland
Articles in the same Issue
- Identification of drought-induced transcription factors in Sorghum bicolor using GO term semantic similarity
- Evaluation of the potential of alkylresorcinols as superoxide anion scavengers and sox-regulon modulators using nitroblue tetrazolium and bioluminescent cell-based assays
- Cyclic phosphatidic acid induces G0/G1 arrest, inhibits AKT phosphorylation, and downregulates cyclin D1 expression in colorectal cancer cells
- Polymorphism of the APEX nuclease 1 gene in keratoconus and Fuchs endothelial corneal dystrophy
- FE65: Roles beyond amyloid precursor protein processing
- Single nucleotide polymorphisms in the STAT3 gene influence AITD susceptibility, thyroid autoantibody levels, and IL6 and IL17 secretion
- Antioxidant effect of a fermented powder of Lady Joy bean in primary rat hepatocytes
- Oncogene-dependent survival of highly transformed cancer cells under conditions of extreme centrifugal force – implications for studies on extracellular vesicles
- Changes in cell death of peripheral blood lymphocytes isolated from children with acute lymphoblastic leukemia upon stimulation with 7 Hz, 30 mT pulsed electromagnetic field
- Flow cytometric analysis of apoptosis in cryoconserved chicken primordial germ cells
- GGeneration of an efficient artificial promoter of bovine skeletal muscle alpha-actin gene (ACTA1) through addition of cis-acting element
Articles in the same Issue
- Identification of drought-induced transcription factors in Sorghum bicolor using GO term semantic similarity
- Evaluation of the potential of alkylresorcinols as superoxide anion scavengers and sox-regulon modulators using nitroblue tetrazolium and bioluminescent cell-based assays
- Cyclic phosphatidic acid induces G0/G1 arrest, inhibits AKT phosphorylation, and downregulates cyclin D1 expression in colorectal cancer cells
- Polymorphism of the APEX nuclease 1 gene in keratoconus and Fuchs endothelial corneal dystrophy
- FE65: Roles beyond amyloid precursor protein processing
- Single nucleotide polymorphisms in the STAT3 gene influence AITD susceptibility, thyroid autoantibody levels, and IL6 and IL17 secretion
- Antioxidant effect of a fermented powder of Lady Joy bean in primary rat hepatocytes
- Oncogene-dependent survival of highly transformed cancer cells under conditions of extreme centrifugal force – implications for studies on extracellular vesicles
- Changes in cell death of peripheral blood lymphocytes isolated from children with acute lymphoblastic leukemia upon stimulation with 7 Hz, 30 mT pulsed electromagnetic field
- Flow cytometric analysis of apoptosis in cryoconserved chicken primordial germ cells
- GGeneration of an efficient artificial promoter of bovine skeletal muscle alpha-actin gene (ACTA1) through addition of cis-acting element