Startseite Tensor-Product Vertex Patch Smoothers for Biharmonic Problems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Tensor-Product Vertex Patch Smoothers for Biharmonic Problems

  • Julius Witte ORCID logo , Cu Cui ORCID logo , Francesca Bonizzoni ORCID logo und Guido Kanschat ORCID logo EMAIL logo
Veröffentlicht/Copyright: 29. Mai 2025

Abstract

We discuss vertex patch smoothers as overlapping domain decomposition methods for fourth order elliptic partial differential equations. We show that they are numerically very efficient and yield high convergence rates. Furthermore, we discuss low rank tensor approximations for their efficient implementation. Our experiments demonstrate that the inexact local solver yields a method which converges fast and uniformly with respect to mesh refinement and polynomial degree. The multiplicative smoother shows superior performance in terms of solution efficiency, requiring fewer iterations in both two- and three-dimensional cases. Additionally, the solver infrastructure supports a mixed-precision approach, executing the multigrid preconditioner in single precision while performing the outer iteration in double precision, thereby increasing throughput by up to 70 %.

Award Identifier / Grant number: 202106380059

Award Identifier / Grant number: EXC 2181/1 – 390900948

Award Identifier / Grant number: P2022N5ZNP

Award Identifier / Grant number: E53C23001670001

Award Identifier / Grant number: E53C24001950001

Funding statement: Cu Cui was supported by the China Scholarship Council (CSC) under grant no. 202106380059. Francesca Bonizzoni has received support from the project PRIN2022, MUR, Italy, 2023–2025, P2022N5ZNP “SIDDMs: shape-informed data-driven models for parametrized PDEs, with application to computational cardiology”. Francesca Bonizzoni is partially funded by “INdAM – GNCS Project”, codice CUP E53C23001670001. Francesca Bonizzoni is member of INdAM-GNCS. Guido Kanschat was supported by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy EXC 2181/1 – 390900948 (the Heidelberg STRUCTURES Excellence Cluster).

References

[1] D. Arndt, W. Bangerth, M. Bergbauer, M. Feder, M. Fehling, J. Heinz, T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, B. Turcksin, D. Wells and S. Zampini, The deal.II library, version 9.5, J. Numer. Math. 31 (2023), no. 3, 231–246. 10.1515/jnma-2023-0089Suche in Google Scholar

[2] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. 10.1137/0719052Suche in Google Scholar

[3] D. N. Arnold, R. S. Falk and R. Winther, Preconditioning in H ( div ) and applications, Math. Comp. 66 (1997), no. 219, 957–984. 10.1090/S0025-5718-97-00826-0Suche in Google Scholar

[4] S. C. Brenner, C 0 interior penalty methods, Frontiers in Numerical Analysis (Durham 2010), Lect. Notes Comput. Sci. Eng. 85, Springer, Heidelberg (2012), 79–147. 10.1007/978-3-642-23914-4_2Suche in Google Scholar

[5] S. C. Brenner and L.-Y. Sung, C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput. 22/23 (2005), 83–118. 10.1007/s10915-004-4135-7Suche in Google Scholar

[6] S. C. Brenner and K. Wang, Two-level additive Schwarz preconditioners for C 0 interior penalty methods, Numer. Math. 102 (2005), no. 2, 231–255. 10.1007/s00211-005-0641-2Suche in Google Scholar

[7] S. C. Brenner and J. Zhao, Convergence of multigrid algorithms for interior penalty methods, Appl. Numer. Anal. Comput. Math. 2 (2005), no. 1, 3–18. 10.1002/anac.200410019Suche in Google Scholar

[8] P. D. Brubeck and P. E. Farrell, A scalable and robust vertex-star relaxation for high-order FEM, SIAM J. Sci. Comput. 44 (2022), no. 5, A2991–A3017. 10.1137/21M1444187Suche in Google Scholar

[9] D. Cho, L. F. Pavarino and S. Scacchi, Isogeometric Schwarz preconditioners for the biharmonic problem, Electron. Trans. Numer. Anal. 49 (2018), 81–102. 10.1553/etna_vol49s81Suche in Google Scholar

[10] C. Cui, Acceleration of tensor-product operations with tensor cores, ACM Trans. Parallel Comput. 11 (2024), no. 4, Paper No. 15. 10.1145/3695466Suche in Google Scholar

[11] C. Cui, P. Grosse-Bley, G. Kanschat and R. Strzodka, An implementation of tensor product patch smoothers on GPUs, SIAM J. Sci. Comput. 47 (2025), no. 2, B280–B307. 10.1137/24M1642706Suche in Google Scholar

[12] C. Cui and G. Kanschat, Multigrid methods for the Stokes problem on GPU systems, preprint (2024), https://arxiv.org/abs/2410.09497. 10.2139/ssrn.5009863Suche in Google Scholar

[13] C. Cui and G. Kanschat, Multilevel interior penalty methods on GPUs, preprint (2024), https://arxiv.org/abs/2405.18982. Suche in Google Scholar

[14] X. Feng and O. A. Karakashian, Two-level non-overlapping Schwarz preconditioners for a discontinuous Galerkin approximation of the biharmonic equation, J. Sci. Comput. 22/23 (2005), 289–314. 10.1007/s10915-004-4141-9Suche in Google Scholar

[15] D. Göddeke, R. Strzodka and S. Turek, Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations, Int. J. Parallel Emergent Distrib. Syst. 22 (2007), no. 4, 221–256. 10.1080/17445760601122076Suche in Google Scholar

[16] G. Kanschat, R. Lazarov and Y. Mao, Geometric multigrid for Darcy and Brinkman models of flows in highly heterogeneous porous media: A numerical study, J. Comput. Appl. Math. 310 (2017), 174–185. 10.1016/j.cam.2016.05.016Suche in Google Scholar

[17] G. Kanschat and Y. Mao, Multigrid methods for H div -conforming discontinuous Galerkin methods for the Stokes equations, J. Numer. Math. 23 (2015), no. 1, 51–66. 10.1515/jnma-2015-0005Suche in Google Scholar

[18] G. Kanschat and N. Sharma, Divergence-conforming discontinuous Galerkin methods and C 0 interior penalty methods, SIAM J. Numer. Anal. 52 (2014), no. 4, 1822–1842. 10.1137/120902975Suche in Google Scholar

[19] M. Kronbichler and K. Kormann, A generic interface for parallel cell-based finite element operator application, Comput. & Fluids 63 (2012), 135–147. 10.1016/j.compfluid.2012.04.012Suche in Google Scholar

[20] M. Kronbichler and K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators, ACM Trans. Math. Software 45 (2019), no. 3, Paper No. 29. 10.1145/3325864Suche in Google Scholar

[21] R. E. Lynch, J. R. Rice and D. H. Thomas, Direct solution of partial difference equations by tensor product methods, Numer. Math. 6 (1964), 185–199. 10.1007/BF01386067Suche in Google Scholar

[22] J. M. Melenk, K. Gerdes and C. Schwab, Fully discrete hp-finite elements: Fast quadrature, Comput. Methods Appl. Mech. Engrg. 190 (2001), no. 32–33, 4339–4364. 10.1016/S0045-7825(00)00322-4Suche in Google Scholar

[23] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hambg. 36 (1971), 9–15. 10.1007/BF02995904Suche in Google Scholar

[24] J. Witte, Fast and robust multilevel Schwarz methods using tensor structure for high-order finite elements, PhD thesis, Heidelberg University, 2022. Suche in Google Scholar

[25] J. Witte, D. Arndt and G. Kanschat, Fast tensor product Schwarz smoothers for high-order discontinuous Galerkin methods, Comput. Methods Appl. Math. 21 (2021), no. 3, 709–728. 10.1515/cmam-2020-0078Suche in Google Scholar

[26] S. Zhang, An optimal order multigrid method for biharmonic, C 1 finite element equations, Numer. Math. 56 (1989), no. 6, 613–624. 10.1007/BF01396347Suche in Google Scholar

[27] J. Zhao, Convergence of V- and F-cycle multigrid methods for the biharmonic problem using the Hsieh–Clough–Tocher element, Numer. Methods Partial Differential Equations 21 (2005), no. 3, 451–471. 10.1002/num.20048Suche in Google Scholar

[28] NVIDIA Corporation, Nsight compute, 2023. Suche in Google Scholar

Received: 2024-11-30
Revised: 2025-04-29
Accepted: 2025-05-08
Published Online: 2025-05-29
Published in Print: 2025-07-01

© 2025 Institute of Mathematics of the National Academy of Science of Belarus, published by De Gruyter, Berlin/Boston

Heruntergeladen am 1.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2024-0192/html?lang=de
Button zum nach oben scrollen