Abstract
For a dual-dual formulation of a frictional contact problem in linear elasticity we present a mixed finite element method based on PEERS elements and we analyze the performance of a nested Uzawa algorithm.
Dedicated to Norbert Heuer on the occasion of his 60th birthday
References
[1] M. Andres, Dual-dual formulations for frictional contact problems in mechanics, PhD thesis, Institute of Applied Mathematics, Leibniz Universität Hannover, Hannover, 2011. Suche in Google Scholar
[2] M. Andres, M. Maischak and E. P. Stephan, Dual-dual formulation for a contact problem with friction, Comput. Methods Appl. Math. 16 (2016), no. 1, 1–16. 10.1515/cmam-2015-0021Suche in Google Scholar
[3] M. Andres, M. Maischak and E. P. Stephan, A priori error analysis of a dual-dual formulation for frictional contact problems, (2025), submitted. Suche in Google Scholar
[4] D. N. Arnold, F. Brezzi and J. Douglas, Jr., PEERS: A new mixed finite element for plane elasticity, Japan J. Appl. Math. 1 (1984), no. 2, 347–367. 10.1007/BF03167064Suche in Google Scholar
[5] C. Carstensen and G. Dolzmann, A posteriori error estimates for mixed FEM in elasticity, Numer. Math. 81 (1998), no. 2, 187–209. 10.1007/s002110050389Suche in Google Scholar
[6] G. N. Gatica and M. Maischak, A posteriori error estimates for the mixed finite element method with Lagrange multipliers, Numer. Methods Partial Differential Equations 21 (2005), no. 3, 421–450. 10.1002/num.20050Suche in Google Scholar
[7] G. N. Gatica, M. Maischak and E. P. Stephan, Numerical analysis of a transmission problem with Signorini contact using mixed-FEM and BEM, ESAIM Math. Model. Numer. Anal. 45 (2011), no. 4, 779–802. 10.1051/m2an/2010102Suche in Google Scholar
[8] R. Glowinski, J.-L. Lions and R. Trémolières, Numerical Analysis of Variational Inequalities, Stud. Math. Appl. 8, North-Holland, Amsterdam, 1981. Suche in Google Scholar
[9] J. Gwinner and E. P. Stephan, A boundary element procedure for contact problems in plane linear elastostatics, RAIRO Modél. Math. Anal. Numér. 27 (1993), no. 4, 457–480. 10.1051/m2an/1993270404571Suche in Google Scholar
[10] M. Lonsing and R. Verfürth, On the stability of BDMS and PEERS elements, Numer. Math. 99 (2004), no. 1, 131–140. 10.1007/s00211-004-0547-4Suche in Google Scholar
[11] M. Maischak, FEM/BEM methods for Signorini-type problems: Error analysis, adaptivity, preconditioners, Habilitation, Institute of Applied Mathematics, Leibniz University Hanover, Hannover, 2004. Suche in Google Scholar
[12] J.-C. Nédélec, Integral equations with nonintegrable kernels, Integral Equations Operator Theory 5 (1982), no. 4, 562–572. 10.1007/BF01694054Suche in Google Scholar
[13] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006. Suche in Google Scholar
[14] J. E. Roberts and J.-M. Thomas, Mixed and hybrid methods, Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam (1991), 523–639. 10.1016/S1570-8659(05)80041-9Suche in Google Scholar
[15] O. Steinbach, Numerische Näherungsverfahren für elliptische Randwertprobleme, Finite Elemente und Randelemente, B. G. Teubner, Stuttgart, 2003. 10.1007/978-3-322-80054-1Suche in Google Scholar
[16] G. H. Wang and L. H. Wang, Uzawa type algorithm based on dual mixed variational formulation, Appl. Math. Mech. 23 (2002), no. 7, 682–688. 10.1007/BF02456972Suche in Google Scholar
© 2025 Institute of Mathematics of the National Academy of Science of Belarus, published by De Gruyter, Berlin/Boston