Abstract
This article discusses the quasi-optimality of adaptive nonconforming finite element methods for distributed optimal control problems governed by 𝑚-harmonic operators for
Funding source: Science and Engineering Research Board
Award Identifier / Grant number: SRG/2020/001027
Award Identifier / Grant number: SPF/2020/000019
Funding statement: Asha K. Dond gratefully acknowledges funding from the Science and Engineering Research Board (SERB), Government of India, through the Start-up Research Grant, Project No. SRG/2020/001027. Neela Nataraj gratefully acknowledges the SERB POWER Fellowship SPF/2020/000019 and also the kind hospitality of IISER Tvm. Asha K. Dond and Subham Nayak acknowledge the research visit to IITB from the SERB POWER Fellowship SPF/2020/000019.
References
[1] R. Becker, M. Brunner, M. Innerberger, J. M. Melenk and D. Praetorius, Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs, Comput. Math. Appl. 118 (2022), 18–35. 10.1016/j.camwa.2022.05.008Suche in Google Scholar
[2] R. Becker, M. Innerberger and D. Praetorius, Adaptive FEM for parameter-errors in elliptic linear-quadratic parameter estimation problems, SIAM J. Numer. Anal. 60 (2022), no. 3, 1450–1471. 10.1137/21M1458077Suche in Google Scholar
[3] R. Becker and S. Mao, Quasi-optimality of an adaptive finite element method for an optimal control problem, Comput. Methods Appl. Math. 11 (2011), no. 2, 107–128. 10.2478/cmam-2011-0006Suche in Google Scholar
[4] H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Methods Appl. Sci. 2 (1980), no. 4, 556–581. 10.1002/mma.1670020416Suche in Google Scholar
[5] S. C. Brenner, T. Gudi, K. Porwal and L.-Y. Sung, A Morley finite element method for an elliptic distributed optimal control problem with pointwise state and control constraints, ESAIM Control Optim. Calc. Var. 24 (2018), no. 3, 1181–1206. 10.1051/cocv/2017031Suche in Google Scholar
[6] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2007. Suche in Google Scholar
[7] P. Bringmann, C. Carstensen and G. Starke, An adaptive least-squares FEM for linear elasticity with optimal convergence rates, SIAM J. Numer. Anal. 56 (2018), no. 1, 428–447. 10.1137/16M1083797Suche in Google Scholar
[8] C. Carstensen, A. K. Dond, N. Nataraj and A. K. Pani, Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems, Numer. Math. 133 (2016), no. 3, 557–597. 10.1007/s00211-015-0755-0Suche in Google Scholar
[9] C. Carstensen, A. K. Dond and H. Rabus, Quasi-optimality of adaptive mixed FEMs for non-selfadjoint indefinite second-order linear elliptic problems, Comput. Methods Appl. Math. 19 (2019), no. 2, 233–250. 10.1515/cmam-2019-0034Suche in Google Scholar
[10] C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 (2014), no. 6, 1195–1253. 10.1016/j.camwa.2013.12.003Suche in Google Scholar PubMed PubMed Central
[11] C. Carstensen and D. Gallistl, Guaranteed lower eigenvalue bounds for the biharmonic equation, Numer. Math. 126 (2014), no. 1, 33–51. 10.1007/s00211-013-0559-zSuche in Google Scholar
[12] C. Carstensen, D. Gallistl and M. Schedensack, Adaptive nonconforming Crouzeix–Raviart FEM for eigenvalue problems, Math. Comp. 84 (2015), no. 293, 1061–1087. 10.1090/S0025-5718-2014-02894-9Suche in Google Scholar
[13] C. Carstensen and N. Nataraj, A priori and a posteriori error analysis of the Crouzeix–Raviart and Morley FEM with original and modified right-hand sides, Comput. Methods Appl. Math. 21 (2021), no. 2, 289–315. 10.1515/cmam-2021-0029Suche in Google Scholar
[14] C. Carstensen and N. Nataraj, Adaptive Morley FEM for the von Kármán equations with optimal convergence rates, SIAM J. Numer. Anal. 59 (2021), no. 2, 696–719. 10.1137/20M1335613Suche in Google Scholar
[15] C. Carstensen and S. Puttkammer, How to prove the discrete reliability for nonconforming finite element methods, J. Comput. Math. 38 (2020), no. 1, 142–175. 10.4208/jcm.1908-m2018-0174Suche in Google Scholar
[16] C. Carstensen and H. Rabus, Axioms of adaptivity with separate marking for data resolution, SIAM J. Numer. Anal. 55 (2017), no. 6, 2644–2665. 10.1137/16M1068050Suche in Google Scholar
[17] J. M. Cascon, C. Kreuzer, R. H. Nochetto and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524–2550. 10.1137/07069047XSuche in Google Scholar
[18] S. Chowdhury, A. K. Dond, N. Nataraj and D. Shylaja, A posteriori error analysis for a distributed optimal control problem governed by the von Kármán equations, ESAIM Math. Model. Numer. Anal. 56 (2022), no. 5, 1655–1686. 10.1051/m2an/2022040Suche in Google Scholar
[19] S. Chowdhury, N. Nataraj and D. Shylaja, Morley FEM for a distributed optimal control problem governed by the von Kármán equations, Comput. Methods Appl. Math. 21 (2021), no. 1, 233–262. 10.1515/cmam-2020-0030Suche in Google Scholar
[20] P. Danumjaya, A. K. Pany and A. K. Pani, Morley FEM for the fourth-order nonlinear reaction-diffusion problems, Comput. Math. Appl. 99 (2021), 229–245. 10.1016/j.camwa.2021.08.010Suche in Google Scholar
[21] A. K. Dond, T. Gudi and R. C. Sau, An error analysis of discontinuous finite element methods for the optimal control problems governed by Stokes equation, Numer. Funct. Anal. Optim. 40 (2019), no. 4, 421–460. 10.1080/01630563.2018.1538158Suche in Google Scholar
[22] G. Engel, Continuous/discontinuous Galerkin methods for fourth-order elliptic problems, Ph.D. Thesis, Stanford University, 2001. Suche in Google Scholar
[23] L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, American Mathematical Society, Providence, 1998. Suche in Google Scholar
[24] S. Frei, R. Rannacher and W. Wollner, A priori error estimates for the finite element discretization of optimal distributed control problems governed by the biharmonic operator, Calcolo 50 (2013), no. 3, 165–193. 10.1007/s10092-012-0063-3Suche in Google Scholar
[25] D. Gallistl, Morley finite element method for the eigenvalues of the biharmonic operator, IMA J. Numer. Anal. 35 (2015), no. 4, 1779–1811. 10.1093/imanum/dru054Suche in Google Scholar
[26] G. Gantner, A. Haberl, D. Praetorius and S. Schimanko, Rate optimality of adaptive finite element methods with respect to overall computational costs, Math. Comp. 90 (2021), no. 331, 2011–2040. 10.1090/mcom/3654Suche in Google Scholar
[27] G. Gantner, A. Haberl, D. Praetorius and B. Stiftner, Rate optimal adaptive FEM with inexact solver for nonlinear operators, IMA J. Numer. Anal. 38 (2018), no. 4, 1797–1831. 10.1093/imanum/drx050Suche in Google Scholar
[28] E. H. Georgoulis, P. Houston and J. Virtanen, An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems, IMA J. Numer. Anal. 31 (2011), no. 1, 281–298. 10.1093/imanum/drp023Suche in Google Scholar
[29] W. Gong and N. Yan, Adaptive finite element method for elliptic optimal control problems: Convergence and optimality, Numer. Math. 135 (2017), no. 4, 1121–1170. 10.1007/s00211-016-0827-9Suche in Google Scholar
[30] B. Gräß le, Optimal multilevel adaptive FEM for the Argyris element, Comput. Methods Appl. Mech. Engrg. 399 (2022), Article ID 115352. 10.1016/j.cma.2022.115352Suche in Google Scholar
[31] P. Grisvard, Singularities in Boundary Value Problems, Rech. Math. Appl. 22, Masson, Paris, 1992. Suche in Google Scholar
[32] T. Gudi, N. Nataraj and K. Porwal, An interior penalty method for distributed optimal control problems governed by the biharmonic operator, Comput. Math. Appl. 68 (2014), no. 12, 2205–2221. 10.1016/j.camwa.2014.08.012Suche in Google Scholar
[33] A. Haberl, D. Praetorius, S. Schimanko and M. VohralĂk, Convergence and quasi-optimal cost of adaptive algorithms for nonlinear operators including iterative linearization and algebraic solver, Numer. Math. 147 (2021), no. 3, 679–725. 10.1007/s00211-021-01176-wSuche in Google Scholar
[34] P. Heid and T. P. Wihler, On the convergence of adaptive iterative linearized Galerkin methods, Calcolo 57 (2020), no. 3, Paper No. 24. 10.1007/s10092-020-00368-4Suche in Google Scholar
[35] M. Hintermüller, R. H. W. Hoppe, Y. Iliash and M. Kieweg, An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints, ESAIM Control Optim. Calc. Var. 14 (2008), no. 3, 540–560. 10.1051/cocv:2007057Suche in Google Scholar
[36] M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl. 30 (2005), no. 1, 45–61. 10.1007/s10589-005-4559-5Suche in Google Scholar
[37]
R. H. W. Hoppe,
A
[38] J. Hu and Z. Shi, A new a posteriori error estimate for the Morley element, Numer. Math. 112 (2009), no. 1, 25–40. 10.1007/s00211-008-0205-3Suche in Google Scholar
[39] K. Kohls, A. Rösch and K. G. Siebert, A posteriori error analysis of optimal control problems with control constraints, SIAM J. Control Optim. 52 (2014), no. 3, 1832–1861. 10.1137/130909251Suche in Google Scholar
[40]
H. Leng and Y. Chen,
Convergence and quasi-optimality of an adaptive finite element method for optimal control problems on
[41] H. Leng and Y. Chen, Convergence and quasi-optimality of an adaptive finite element method for optimal control problems with integral control constraint, Adv. Comput. Math. 44 (2018), no. 2, 367–394. 10.1007/s10444-017-9546-8Suche in Google Scholar
[42] M. Li, X. Guan and S. Mao, New error estimates of the Morley element for the plate bending problems, J. Comput. Appl. Math. 263 (2014), 405–416. 10.1016/j.cam.2013.12.024Suche in Google Scholar
[43] Y. Li, Quasi-optimal adaptive mixed finite element methods for controlling natural norm errors, Math. Comp. 90 (2021), no. 328, 565–593. 10.1090/mcom/3590Suche in Google Scholar
[44] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Grundlehren Math. Wiss. 170, Springer, New York, 1971. 10.1007/978-3-642-65024-6Suche in Google Scholar
[45] S. Mao and Z. Shi, On the error bounds of nonconforming finite elements, Sci. China Math. 53 (2010), no. 11, 2917–2926. 10.1007/s11425-010-3120-xSuche in Google Scholar
[46] C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim. 43 (2004), no. 3, 970–985. 10.1137/S0363012903431608Suche in Google Scholar
[47] A. Rösch and B. Vexler, Optimal control of the Stokes equations: A priori error analysis for finite element discretization with postprocessing, SIAM J. Numer. Anal. 44 (2006), no. 5, 1903–1920. 10.1137/050637364Suche in Google Scholar
[48] Y. Shen, W. Gong and N. Yan, Convergence of adaptive nonconforming finite element method for Stokes optimal control problems, J. Comput. Appl. Math. 412 (2022), Paper No. 114336. 10.1016/j.cam.2022.114336Suche in Google Scholar
[49] Y. Shen, N. Yan and Z. Zhou, Convergence and quasi-optimality of an adaptive finite element method for elliptic Robin boundary control problem, J. Comput. Appl. Math. 356 (2019), 1–21. 10.1016/j.cam.2019.01.038Suche in Google Scholar
[50] F. Tröltzsch, Optimal Control of Partial Differential Equations, Grad. Stud. Math. 112, American Mathematical Society, Providence, 2010. 10.1090/gsm/112Suche in Google Scholar
[51] M. Wang and J. Xu, The Morley element for fourth order elliptic equations in any dimensions, Numer. Math. 103 (2006), no. 1, 155–169. 10.1007/s00211-005-0662-xSuche in Google Scholar
[52] Z. Zhou, X. Yu and N. Yan, Local discontinuous Galerkin approximation of convection-dominated diffusion optimal control problems with control constraints, Numer. Methods Partial Differential Equations 30 (2014), no. 1, 339–360. 10.1002/num.21815Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Computational Methods in Applied Mathematics (CMAM 2022 Conference, Part 2)
- A Data-Driven Method for Parametric PDE Eigenvalue Problems Using Gaussian Process with Different Covariance Functions
- A Phase-Space Discontinuous Galerkin Scheme for the Radiative Transfer Equation in Slab Geometry
- Space-Time Approximation of Local Strong Solutions to the 3D Stochastic Navier–Stokes Equations
- Convergence of Adaptive Crouzeix–Raviart and Morley FEM for Distributed Optimal Control Problems
- Convergence of the Incremental Projection Method Using Conforming Approximations
- Computational Multiscale Methods for Nondivergence-Form Elliptic Partial Differential Equations
- Space-Time Least-Squares Finite Element Methods for Parabolic Distributed Optimal Control Problems
- Space-Time FEM for the Vectorial Wave Equation under Consideration of Ohm’s Law
- A Convergent Entropy-Dissipating BDF2 Finite-Volume Scheme for a Population Cross-Diffusion System
- Adaptive Multi-level Algorithm for a Class of Nonlinear Problems
- Error Identities for Parabolic Equations with Monotone Spatial Operators
- Adaptive Absorbing Boundary Layer for the Nonlinear Schrödinger Equation
Artikel in diesem Heft
- Frontmatter
- Computational Methods in Applied Mathematics (CMAM 2022 Conference, Part 2)
- A Data-Driven Method for Parametric PDE Eigenvalue Problems Using Gaussian Process with Different Covariance Functions
- A Phase-Space Discontinuous Galerkin Scheme for the Radiative Transfer Equation in Slab Geometry
- Space-Time Approximation of Local Strong Solutions to the 3D Stochastic Navier–Stokes Equations
- Convergence of Adaptive Crouzeix–Raviart and Morley FEM for Distributed Optimal Control Problems
- Convergence of the Incremental Projection Method Using Conforming Approximations
- Computational Multiscale Methods for Nondivergence-Form Elliptic Partial Differential Equations
- Space-Time Least-Squares Finite Element Methods for Parabolic Distributed Optimal Control Problems
- Space-Time FEM for the Vectorial Wave Equation under Consideration of Ohm’s Law
- A Convergent Entropy-Dissipating BDF2 Finite-Volume Scheme for a Population Cross-Diffusion System
- Adaptive Multi-level Algorithm for a Class of Nonlinear Problems
- Error Identities for Parabolic Equations with Monotone Spatial Operators
- Adaptive Absorbing Boundary Layer for the Nonlinear Schrödinger Equation