Startseite Space-Time FEM for the Vectorial Wave Equation under Consideration of Ohm’s Law
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Space-Time FEM for the Vectorial Wave Equation under Consideration of Ohm’s Law

  • Julia I. M. Hauser ORCID logo EMAIL logo
Veröffentlicht/Copyright: 26. Juni 2024

Abstract

The ability to deal with complex geometries and to go to higher orders is the main advantage of space-time finite element methods. Therefore, we want to develop a solid background from which we can construct appropriate space-time methods. In this paper, we will treat time as another space direction, which is the main idea of space-time methods. First, we will briefly discuss how exactly the vectorial wave equation is derived from Maxwell’s equations in a space-time structure, taking into account Ohm’s law. Then we will derive a space-time variational formulation for the vectorial wave equation using different trial and test spaces. This paper has two main goals. First, we prove unique solvability for the resulting Galerkin–Petrov variational formulation. Second, we analyze the discrete equivalent of the equation in a tensor product and show conditional stability, i.e., under a CFL condition. Understanding the vectorial wave equation and the corresponding space-time finite element methods is crucial for improving the existing theory of Maxwell’s equations and paves the way to computations of more complicated electromagnetic problems.

Acknowledgements

The author wants to thank Dr. Marco Zank for the fruitful discussions on wave equations and Dr. Stefan Kurz for his advice on earlier versions of the norm estimates.

References

[1] D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15 (2006), 1–155. 10.1017/S0962492906210018Suche in Google Scholar

[2] F. Assous, P. Ciarlet and S. Labrunie, Mathematical Foundations of Computational Electromagnetism, Appl. Math. Sci. 198, Springer, Cham, 2018. 10.1007/978-3-319-70842-3Suche in Google Scholar

[3] J.-P. Aubin, Applied Functional Analysis, 2nd ed., Pure Appl. Math. (New York), Wiley-Interscience, New York, 2000. Suche in Google Scholar

[4] X. Bai and H. Rui, A second-order space-time accurate scheme for Maxwell’s equations in a Cole–Cole dispersive medium, Eng. Comput. 38 (2022), no. 6, 5153–5172. 10.1007/s00366-021-01585-3Suche in Google Scholar

[5] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, Boston, 1988. Suche in Google Scholar

[6] M. Cessenat, Mathematical Methods in Electromagnetism, Ser. Adv. Math. Appl. Sci. 41, World Scientific, River Edge, 1996. 10.1142/2938Suche in Google Scholar

[7] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Society for Industrial and Applied Mathematics, Philadelphia, 1983. Suche in Google Scholar

[8] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4th ed., Appl. Math. Sci. 93, Springer, Cham, 2019. 10.1007/978-3-030-30351-8Suche in Google Scholar

[9] Z. D. Crawford, J. Li, A. Christlieb and B. Shanker, Unconditionally stable time stepping method for mixed finite element Maxwell solvers, Progr. Electromagn. Res. C 103 (2020), 17–30. 10.2528/PIERC20021001Suche in Google Scholar

[10] T. A. Davis, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software 30 (2004), no. 2, 196–199. 10.1145/992200.992206Suche in Google Scholar

[11] A. Ern and J.-L. Guermond, Finite Elements I—Approximation and Interpolation, Texts Appl. Math. 72, Springer, Cham, 2021. 10.1007/978-3-030-56341-7Suche in Google Scholar

[12] A. Ern and J.-L. Guermond, Finite Elements II—Galerkin Approximation, Elliptic and Mixed PDEs, Texts Appl. Math. 73, Springer, Cham, 2021. 10.1007/978-3-030-56923-5Suche in Google Scholar

[13] J. P. Fortney, A Visual Introduction to Differential Forms and Calculus on Manifolds, Birkhäuser/Springer, Cham, 2018. 10.1007/978-3-319-96992-3Suche in Google Scholar

[14] J. Gopalakrishnan, M. Neumüller and P. S. Vassilevski, The auxiliary space preconditioner for the de Rham complex, SIAM J. Numer. Anal. 56 (2018), no. 6, 3196–3218. 10.1137/17M1153376Suche in Google Scholar

[15] J. I. M. Hauser, Space-time methods for Maxwell’s equations - solving the vectorial wave equation, PhD Thesis, Graz University of Technology, 2021. Suche in Google Scholar

[16] J. I. M. Hauser and M. Zank, Numerical study of conforming space-time methods for Maxwell’s equations, Numer. Methods Partial Differential Equations 40 (2024), no. 2, Paper No. e23070. 10.1002/num.23070Suche in Google Scholar

[17] J. D. Jackson, Classical Electrodynamics, 3rd ed., John Wiley & Sons, New York, 1998. Suche in Google Scholar

[18] J. D. Jackson and L. B. Okun, Historical roots of gauge invariance, Rev. Modern Phys. 73 (2001), no. 3, 663–680. 10.1103/RevModPhys.73.663Suche in Google Scholar

[19] J. Jin, The Finite Element Method in Electromagnetics, 2nd ed., Wiley-Interscience, New York, 2002. Suche in Google Scholar

[20] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Appl. Math. Sci. 49, Springer, New York, 1985. 10.1007/978-1-4757-4317-3Suche in Google Scholar

[21] L. D. Landau, L. P. Pitaevskiĭ and E. M. Lifshits, Electrodynamics of Continuous Media. Vol. 8, 2nd ed., Elsevier, Amsterdam, 1984. Suche in Google Scholar

[22] S. Lang, Differential and Riemannian Manifolds, 3rd ed., Grad. Texts in Math. 160, Springer, New York, 1995. 10.1007/978-1-4612-4182-9Suche in Google Scholar

[23] P. Monk, Finite Element Methods for Maxwell’s Equations, Numer. Math. Sci. Comput., Oxford University, New York, 2003. 10.1093/acprof:oso/9780198508885.001.0001Suche in Google Scholar

[24] D. Pauly and M. Schomburg, Hilbert complexes with mixed boundary conditions part 1: De Rham complex, Math. Methods Appl. Sci. 45 (2022), no. 5, 2465–2507. 10.1002/mma.7894Suche in Google Scholar

[25] A. J. Poggio and E. K. Miller, CHAPTER 4 - Integral equation solutions of three-dimensional scattering problems, Computer Techniques for Electromagnetics, Int. Ser. Monogr. Electrical Eng., Pergamon Press, Oxford (1973), 159–264. 10.1016/B978-0-08-016888-3.50008-8Suche in Google Scholar

[26] E. J. Post, Formal Structure of Electromagnetics: General Covariance and Electromagnetics, Ser. in Phys., Dover, New York, 1962. Suche in Google Scholar

[27] J. Schöberl, NETGEN: An advancing front 2d/3d-mesh generator based on abstract rules, Comput. Vis. Sci. 1 (1997), no. 1, 41–52. 10.1007/s007910050004Suche in Google Scholar

[28] A. Serdyukov, I. Semchenko, S. Tretyakov and A. Sihvola, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications, Electrocomponent Sci. Monogr. 11, Gordon and Breach Science, London, 2001. Suche in Google Scholar

[29] O. Steinbach and M. Zank, A stabilized space-time finite element method for the wave equation, Advanced Finite Element Methods with Applications, Lect. Notes Comput. Sci. Eng. 128, Springer, Cham (2019), 341–370. 10.1007/978-3-030-14244-5_17Suche in Google Scholar

[30] O. Steinbach and M. Zank, Coercive space-time finite element methods for initial boundary value problems, Electron. Trans. Numer. Anal. 52 (2020), 154–194. 10.1553/etna_vol52s154Suche in Google Scholar

[31] A. Stern, Y. Tong, M. Desbrun and J. E. Marsden, Geometric computational electrodynamics with variational integrators and discrete differential forms, Geometry, Mechanics, and Dynamics, Fields Inst. Commun. 73, Springer, New York (2015), 437–475. 10.1007/978-1-4939-2441-7_19Suche in Google Scholar

[32] M. Tenenbaum and H. Pollard, Ordinary Differential Equations: An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences, Dover, New York, 1985. Suche in Google Scholar

[33] K. Umashankar, Introduction to Engineering Electromagnetic Fields, World Scientific, Hackensack, 1989. 10.1142/0865Suche in Google Scholar

[34] J. Weidmann, Lineare Operatoren in Hilberträumen. Teil 1, Math. Textb., B. G. Teubner, Stuttgart, 2000. 10.1007/978-3-322-80094-7Suche in Google Scholar

[35] J. Xie, D. Liang and Z. Zhang, Energy-preserving local mesh-refined splitting FDTD schemes for two dimensional Maxwell’s equations, J. Comput. Phys. 425 (2021), Paper No. 109896. 10.1016/j.jcp.2020.109896Suche in Google Scholar

[36] E. Zeidler, Nonlinear Functional Analysis and its Applications. II/A, Springer, New York, 1990. 10.1007/978-1-4612-0981-2Suche in Google Scholar

Received: 2023-03-30
Revised: 2024-01-22
Accepted: 2024-04-30
Published Online: 2024-06-26
Published in Print: 2024-07-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2023-0079/html?lang=de
Button zum nach oben scrollen