Startseite Optimal Convergence of the Newton Iterative Crank–Nicolson Finite Element Method for the Nonlinear Schrödinger Equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optimal Convergence of the Newton Iterative Crank–Nicolson Finite Element Method for the Nonlinear Schrödinger Equation

  • Hanzhang Hu , Buyang Li und Jun Zou EMAIL logo
Veröffentlicht/Copyright: 25. Mai 2022

Abstract

An error estimate is presented for the Newton iterative Crank–Nicolson finite element method for the nonlinear Schrödinger equation, fully discretized by quadrature, without restriction on the grid ratio between temporal step size and spatial mesh size. It is shown that the Newton iterative solution converges double exponentially with respect to the number of iterations to the solution of the implicit Crank–Nicolson method uniformly for all time levels, with optimal convergence in both space and time.

MSC 2010: 65N12; 65N15; 35Q55

Award Identifier / Grant number: 2018A0303100016

Award Identifier / Grant number: 15301818

Award Identifier / Grant number: 14306921

Award Identifier / Grant number: 14306719

Award Identifier / Grant number: P0031035

Funding statement: The work of the first author was supported by Natural Science Foundation of Guangdong province, China (2018A0303100016). The work of the second author was partially supported by Hong Kong RGC General Research Fund (project 15301818) and an internal grant of the university (Project ID: P0031035, Work Programme: ZZKQ). The work of the third author was substantially supported by Hong Kong RGC General Research Fund (projects 14306921 and 14306719).

Appendix: Proof of Lemma 4.1

(i) By using the definition in (4.1) and Hölder’s inequality, we have

v h H h s = ( - Δ h ) s 2 v h L 2 = ( j = 1 J | ( v h , ϕ j ) | 2 - s λ j s | ( v h , ϕ j ) | s ) 1 2 ( j = 1 J | ( v h , ϕ j ) | 2 ) 2 - s 4 ( j = 1 J λ j 2 | ( v h , ϕ j ) | 2 ) s 4 = v h L 2 2 - s 2 Δ h v h L 2 s 2 = v h L 2 1 - s 2 v h H h 2 s 2 .

(ii) By the definition of the discrete Laplacian operator, we have

| ( Δ h u h , v ) | = | ( Δ h u h , P h v ) | = | ( u h , P h v ) | C u h L 2 P h v L 2 C h - 2 u h L 2 P h v L 2 C h - 2 u h L 2 v L 2 for all v L 2 ( ( Ω ) ) ,

where the second to last inequality is the standard inverse inequality for finite element functions. Since the inequality above holds for all v L 2 ( ( Ω ) ) , it follows that Δ h u h L 2 C h - 2 u h L 2 . By using this estimate and the interpolation inequality proved in Lemma 4.1 (i), we have

( - Δ h ) s 2 v h L 2 = v h H h s v h L 2 2 - s 2 v h H h 2 s 2 = v h L 2 2 - s 2 Δ h v h L 2 s 2 C h - s v h L 2 .

Since ( - Δ h ) s 2 2 v h = ( - Δ h ) s 2 - s 1 2 ( - Δ h ) s 1 2 v h , the inequality above implies that

( - Δ h ) s 2 2 v h L 2 C h - ( s 2 - s 1 ) ( - Δ h ) s 1 2 v h L 2 .

This proves the second result of Lemma 4.1.∎

References

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure Appl. Math. (Amsterdam) 140, Elsevier, Amsterdam, 2003. Suche in Google Scholar

[2] G. D. Akrivis, Finite difference discretization of the cubic Schrödinger equation, IMA J. Numer. Anal. 13 (1993), no. 1, 115–124. 10.1093/imanum/13.1.115Suche in Google Scholar

[3] G. D. Akrivis, V. A. Dougalis and O. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math. 59 (1991), no. 1, 31–53. 10.1007/BF01385769Suche in Google Scholar

[4] M. Amrein and T. P. Wihler, Fully adaptive Newton–Galerkin methods for semilinear elliptic partial differential equations, SIAM J. Sci. Comput. 37 (2015), no. 4, A1637–A1657. 10.1137/140983537Suche in Google Scholar

[5] X. Antoine, W. Bao and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations, Comput. Phys. Commun. 184 (2013), no. 12, 2621–2633. 10.1016/j.cpc.2013.07.012Suche in Google Scholar

[6] W. Bao and Y. Cai, Optimal error estimates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation, Math. Comp. 82 (2013), no. 281, 99–128. 10.1090/S0025-5718-2012-02617-2Suche in Google Scholar

[7] W. Bao, Q. Tang and Z. Xu, Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation, J. Comput. Phys. 235 (2013), 423–445. 10.1016/j.jcp.2012.10.054Suche in Google Scholar

[8] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2008. 10.1007/978-0-387-75934-0Suche in Google Scholar

[9] M. Delfour, M. Fortin and G. Payre, Finite-difference solutions of a nonlinear Schrödinger equation, J. Comput. Phys. 44 (1981), no. 2, 277–288. 10.1016/0021-9991(81)90052-8Suche in Google Scholar

[10] P. Deuflhard, Newton Methods for Nonlinear Problems, Springer Ser. Comput. Math. 35, Springer, Berlin, 2004. Suche in Google Scholar

[11] L. C. Evans, Partial Differential Equations, 2nd ed., Grad. Stud. Math. 19, American Mathematical Society, Providence, 2010. Suche in Google Scholar

[12] X. Feng, B. Li and S. Ma, High-order mass- and energy-conserving SAV-Gauss collocation finite element methods for the nonlinear Schrödinger equation, SIAM J. Numer. Anal. 59 (2021), no. 3, 1566–1591. 10.1137/20M1344998Suche in Google Scholar

[13] X. Feng, H. Liu and S. Ma, Mass- and energy-conserved numerical schemes for nonlinear Schrödinger equations, Commun. Comput. Phys. 26 (2019), no. 5, 1365–1396. 10.4208/cicp.2019.js60.05Suche in Google Scholar

[14] Y. Gong, Q. Wang, Y. Wang and J. Cai, A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation, J. Comput. Phys. 328 (2017), 354–370. 10.1016/j.jcp.2016.10.022Suche in Google Scholar

[15] L. Grafakos, Classical Fourier Analysis, 2nd ed., Grad. Texts in Math. 249, Springer, New York, 2008. 10.1007/978-0-387-09432-8Suche in Google Scholar

[16] L. Grafakos and S. Oh, The Kato–Ponce inequality, Comm. Partial Differential Equations 39 (2014), no. 6, 1128–1157. 10.1080/03605302.2013.822885Suche in Google Scholar

[17] P. Henning and D. Peterseim, Crank–Nicolson Galerkin approximations to nonlinear Schrödinger equations with rough potentials, Math. Models Methods Appl. Sci. 27 (2017), no. 11, 2147–2184. 10.1142/S0218202517500415Suche in Google Scholar

[18] O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: The discontinuous Galerkin method, Math. Comp. 67 (1998), no. 222, 479–499. 10.1090/S0025-5718-98-00946-6Suche in Google Scholar

[19] O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: The continuous Galerkin method, SIAM J. Numer. Anal. 36 (1999), no. 6, 1779–1807. 10.1137/S0036142997330111Suche in Google Scholar

[20] B. Li, S. Ma and N. Wang, Second-order convergence of the linearly extrapolated Crank–Nicolson method for the Navier–Stokes equations with H 1 initial data, J. Sci. Comput. 88 (2021), no. 3, Paper No. 70. 10.1007/s10915-021-01588-8Suche in Google Scholar

[21] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University, Cambridge, 2000. Suche in Google Scholar

[22] J. M. Sanz-Serna, Methods for the numerical solution of the nonlinear Schroedinger equation, Math. Comp. 43 (1984), no. 167, 21–27. 10.1090/S0025-5718-1984-0744922-XSuche in Google Scholar

[23] J. Shen, J. Xu and J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev. 61 (2019), no. 3, 474–506. 10.1137/17M1150153Suche in Google Scholar

[24] J. Wang, A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, J. Sci. Comput. 60 (2014), no. 2, 390–407. 10.1007/s10915-013-9799-4Suche in Google Scholar

[25] T. Wang, B. Guo and Q. Xu, Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, J. Comput. Phys. 243 (2013), 382–399. 10.1016/j.jcp.2013.03.007Suche in Google Scholar

Received: 2022-03-10
Accepted: 2022-03-10
Published Online: 2022-05-25
Published in Print: 2022-07-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2022-0057/html?lang=de
Button zum nach oben scrollen