Abstract
This paper is concerned with the use of the focal underdetermined system solver to recover sparse empirical quadrature rules for parametrized integrals from existing data. This algorithm, originally proposed for image and signal reconstruction, relies on an approximated
References
[1] S. S. An, T. Kim and D. L. James, Optimizing cubature for efficient integration of subspace deformations, ACM Trans. Graph. 27 (2008), no. 165, 1–10. 10.1145/1457515.1409118Suche in Google Scholar
[2] E. D. Andersen and K. D. Andersen, Presolving in linear programming, Math. Program. 71 (1995), no. 2(A), 221–245. 10.1007/BF01586000Suche in Google Scholar
[3] M. Barrault, Y. Maday, N. C. Nguyen and A. T. Patera, An “empirical interpolation” method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris 339 (2004), no. 9, 667–672. 10.1016/j.crma.2004.08.006Suche in Google Scholar
[4] T. Chapman, P. Avery, P. Collins and C. Farhat, Accelerated mesh sampling for the hyper reduction of nonlinear computational models, Internat. J. Numer. Methods Engrg. 109 (2017), no. 12, 1623–1654. 10.1002/nme.5332Suche in Google Scholar
[5] S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput. 32 (2010), no. 5, 2737–2764. 10.1137/090766498Suche in Google Scholar
[6] G. B. Dantzig, A. Orden and P. Wolfe, The generalized simplex method for minimizing a linear form under linear inequality restraints, Pacific J. Math. 5 (1955), 183–195. 10.2140/pjm.1955.5.183Suche in Google Scholar
[7]
M. E. Davies and R. Gribonval,
Restricted isometry constants where
[8] R. DeVore, S. Foucart, G. Petrova and P. Wojtaszczyk, Computing a quantity of interest from observational data, Constr. Approx. 49 (2019), no. 3, 461–508. 10.1007/s00365-018-9433-7Suche in Google Scholar
[9] C. Farhat, T. Chapman and P. Avery, Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models, Internat. J. Numer. Methods Engrg. 102 (2015), no. 5, 1077–1110. 10.1002/nme.4820Suche in Google Scholar
[10]
S. Foucart and M.-J. Lai,
Sparsest solutions of underdetermined linear systems via
[11] S. Grimberg, C. Farhat, R. Tezaur and C. Bou-Mosleh, Mesh sampling and weighting for the hyperreduction of nonlinear Petrov–Galerkin reduced-order models with local reduced-order bases, Internat. J. Numer. Methods Engrg. 122 (2021), no. 7, 1846–1874. 10.1002/nme.6603Suche in Google Scholar
[12] I. F. Gorodnitsky and B. D. Rao, Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm, IEEE Trans. Signal Process. 45 (1997), no. 3, 600–616. 10.1109/78.558475Suche in Google Scholar
[13] N. Halko, P. G. Martinsson and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev. 53 (2011), no. 2, 217–288. 10.1137/090771806Suche in Google Scholar
[14] J. A. Hernández, M. A. Caicedo and A. Ferrer, Dimensional hyper-reduction of nonlinear finite element models via empirical cubature, Comput. Methods Appl. Mech. Engrg. 313 (2017), 687–722. 10.1016/j.cma.2016.10.022Suche in Google Scholar
[15] V. Hernández, J. E. Román and A. Tomás, A robust and efficient parallel SVD solver based on restarted Lanczos bidiagonalization, Electron. Trans. Numer. Anal. 31 (2008), 68–85. Suche in Google Scholar
[16] J. S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Springer Briefs Math., Springer, Cham, 2016. 10.1007/978-3-319-22470-1Suche in Google Scholar
[17] E. J. Kontoghiorghes, Handbook of Parallel Computing and Statistics, Chapman & Hall/CRC, Boca Raton, 2005. 10.1201/9781420028683Suche in Google Scholar
[18] M. Manucci, Accompanying codes published at GitHub, https://github.com/MattiaManucci/Sparse-data-driven-quadrature-rules-via-FOCUSS.git, 2021. Suche in Google Scholar
[19] B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM J. Comput. 24 (1995), no. 2, 227–234. 10.1137/S0097539792240406Suche in Google Scholar
[20] A. T. Patera and M. Yano, An LP empirical quadrature procedure for parametrized functions, C. R. Math. Acad. Sci. Paris 355 (2017), no. 11, 1161–1167. 10.1016/j.crma.2017.10.020Suche in Google Scholar
[21] A. Quarteroni, G. Rozza and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations and applications, J. Math. Ind. 1 (2011), Article ID 3. 10.1186/2190-5983-1-3Suche in Google Scholar
[22] D. Ryckelynck, Hyper-reduction of mechanical models involving internal variables, Internat. J. Numer. Methods Engrg. 77 (2009), no. 1, 75–89. 10.1002/nme.2406Suche in Google Scholar
[23] E. K. Ryu and S. P. Boyd, Extensions of Gauss quadrature via linear programming, Found. Comput. Math. 15 (2015), no. 4, 953–971. 10.1007/s10208-014-9197-9Suche in Google Scholar
[24] M. K. Sleeman and M. Yano, Goal-oriented model reduction for parametrized time-dependent nonlinear partial differential equations, Comput. Methods Appl. Mech. Engrg. 388 (2022), Paper No. 114206. 10.1016/j.cma.2021.114206Suche in Google Scholar
[25] T. Taddei, An offline/online procedure for dual norm calculations of parameterized functionals: Empirical quadrature and empirical test spaces, Adv. Comput. Math. 45 (2019), no. 5–6, 2429–2462. 10.1007/s10444-019-09721-wSuche in Google Scholar
[26] T. Taddei and L. Zhang, A discretize-then-map approach for the treatment of parameterized geometries in model order reduction, Comput. Methods Appl. Mech. Engrg. 384 (2021), Paper No. 113956. 10.1016/j.cma.2021.113956Suche in Google Scholar
[27] M. Yano and A. T. Patera, An LP empirical quadrature procedure for reduced basis treatment of parametrized nonlinear PDEs, Comput. Methods Appl. Mech. Engrg. 344 (2019), 1104–1123. 10.1016/j.cma.2018.02.028Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A General Error Estimate For Parabolic Variational Inequalities
- Functional A Posteriori Error Estimates for the Parabolic Obstacle Problem
- Multi-Scale Paraxial Models to Approximate Vlasov–Maxwell Equations
- Finite Element Penalty Method for the Oldroyd Model of Order One with Non-smooth Initial Data
- Quasi-Newton Iterative Solution of Non-Orthotropic Elliptic Problems in 3D with Boundary Nonlinearity
- Improving Regularization Techniques for Incompressible Fluid Flows via Defect Correction
- Fully Discrete Finite Element Approximation of the MHD Flow
- Sparse Data-Driven Quadrature Rules via ℓ p -Quasi-Norm Minimization
- Identification of Matrix Diffusion Coefficient in a Parabolic PDE
- A Finite Element Method for Two-Phase Flow with Material Viscous Interface
- On the Finite Element Approximation of Fourth-Order Singularly Perturbed Eigenvalue Problems
- Application of Fourier Truncation Method to Numerical Differentiation for Bivariate Functions
- Factorized Schemes for First and Second Order Evolution Equations with Fractional Powers of Operators
Artikel in diesem Heft
- Frontmatter
- A General Error Estimate For Parabolic Variational Inequalities
- Functional A Posteriori Error Estimates for the Parabolic Obstacle Problem
- Multi-Scale Paraxial Models to Approximate Vlasov–Maxwell Equations
- Finite Element Penalty Method for the Oldroyd Model of Order One with Non-smooth Initial Data
- Quasi-Newton Iterative Solution of Non-Orthotropic Elliptic Problems in 3D with Boundary Nonlinearity
- Improving Regularization Techniques for Incompressible Fluid Flows via Defect Correction
- Fully Discrete Finite Element Approximation of the MHD Flow
- Sparse Data-Driven Quadrature Rules via ℓ p -Quasi-Norm Minimization
- Identification of Matrix Diffusion Coefficient in a Parabolic PDE
- A Finite Element Method for Two-Phase Flow with Material Viscous Interface
- On the Finite Element Approximation of Fourth-Order Singularly Perturbed Eigenvalue Problems
- Application of Fourier Truncation Method to Numerical Differentiation for Bivariate Functions
- Factorized Schemes for First and Second Order Evolution Equations with Fractional Powers of Operators