Startseite Mathematik An Unfitted dG Scheme for Coupled Bulk-Surface PDEs on Complex Geometries
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An Unfitted dG Scheme for Coupled Bulk-Surface PDEs on Complex Geometries

  • Christian Engwer ORCID logo EMAIL logo und Sebastian Westerheide
Veröffentlicht/Copyright: 1. Juni 2021

Abstract

The unfitted discontinuous Galerkin (UDG) method allows for conservative dG discretizations of partial differential equations (PDEs) based on cut cell meshes. It is hence particularly suitable for solving continuity equations on complex-shaped bulk domains.

In this paper based on and extending the PhD thesis of the second author, we show how the method can be transferred to PDEs on curved surfaces. Motivated by a class of biological model problems comprising continuity equations on a static bulk domain and its surface, we propose a new UDG scheme for bulk-surface models.

The method combines ideas of extending surface PDEs to higher-dimensional bulk domains with concepts of trace finite element methods. A particular focus is given to the necessary steps to retain discrete analogues to conservation laws of the discretized PDEs. A high degree of geometric flexibility is achieved by using a level set representation of the geometry. We present theoretical results to prove stability of the method and to investigate its conservation properties. Convergence is shown in an energy norm and numerical results show optimal convergence order in bulk/surface H 1 - and L 2 -norms.

Award Identifier / Grant number: 2044-390685587

Award Identifier / Grant number: EN 1042/4-1

Funding statement: Christian Engwer was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics–Geometry–Structure. Sebastian Westerheide was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), grant no. EN 1042/4-1: “Massenerhaltende Kopplung von Oberflächen- und Volumenprozessen auf impliziten, zeitabhängigen Gebieten”.

References

[1] P. F. Antonietti, A. Dedner, P. Madhavan, S. Stangalino, B. Stinner and M. Verani, High order discontinuous Galerkin methods for elliptic problems on surfaces, SIAM J. Numer. Anal. 53 (2015), no. 2, 1145–1171. 10.1137/140957172Suche in Google Scholar

[2] J. W. Barrett and C. M. Elliott, Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal. 7 (1987), no. 3, 283–300. 10.1093/imanum/7.3.283Suche in Google Scholar

[3] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger and O. Sander, A generic grid interface for parallel and adaptive scientific computing. II. Implementation and tests in DUNE, Computing 82 (2008), no. 2–3, 121–138. 10.1007/s00607-008-0004-9Suche in Google Scholar

[4] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger and O. Sander, A generic grid interface for parallel and adaptive scientific computing. I. Abstract framework, Computing 82 (2008), no. 2–3, 103–119. 10.1007/s00607-008-0003-xSuche in Google Scholar

[5] P. Bastian and C. Engwer, An unfitted finite element method using discontinuous Galerkin, Internat. J. Numer. Methods Engrg. 79 (2009), no. 12, 1557–1576. 10.1002/nme.2631Suche in Google Scholar

[6] P. Bastian, F. Heimann and S. Marnach, Generic implementation of finite element methods in the distributed and unified numerics environment (DUNE), Kybernetika (Prague) 46 (2010), no. 2, 294–315. Suche in Google Scholar

[7] E. Burman, S. Claus, P. Hansbo, M. G. Larson and A. Massing, CutFEM: discretizing geometry and partial differential equations, Internat. J. Numer. Methods Engrg. 104 (2015), no. 7, 472–501. 10.1002/nme.4823Suche in Google Scholar

[8] E. Burman, P. Hansbo, M. G. Larson and A. Massing, Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 6, 2247–2282. 10.1051/m2an/2018038Suche in Google Scholar

[9] E. Burman, P. Hansbo, M. G. Larson and S. Zahedi, Cut finite element methods for coupled bulk-surface problems, Numer. Math. 133 (2016), no. 2, 203–231. 10.1007/s00211-015-0744-3Suche in Google Scholar

[10] T. F. Chan and L. A. Vese, An active contour model without edges, Scale-Space Theories in Computer Vision, Springer, Berlin (1999), 141–151. 10.1007/3-540-48236-9_13Suche in Google Scholar

[11] T. F. Chan and L. A. Vese, Active contours without edges, IEEE Trans. Image Process. 10 (2001), no. 2, 266–277. 10.1109/83.902291Suche in Google Scholar PubMed

[12] K. Deckelnick, G. Dziuk, C. M. Elliott and C.-J. Heine, An h-narrow band finite-element method for elliptic equations on implicit surfaces, IMA J. Numer. Anal. 30 (2010), no. 2, 351–376. 10.1093/imanum/drn049Suche in Google Scholar

[13] K. Deckelnick, C. M. Elliott and T. Ranner, Unfitted finite element methods using bulk meshes for surface partial differential equations, SIAM J. Numer. Anal. 52 (2014), no. 4, 2137–2162. 10.1137/130948641Suche in Google Scholar

[14] G. Dziuk and C. M. Elliott, Eulerian finite element method for parabolic PDEs on implicit surfaces, Interfaces Free Bound. 10 (2008), no. 1, 119–138. 10.4171/IFB/182Suche in Google Scholar

[15] G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs, Acta Numer. 22 (2013), 289–396. 10.1017/S0962492913000056Suche in Google Scholar

[16] C. M. Elliott and T. Ranner, Finite element analysis for a coupled bulk-surface partial differential equation, IMA J. Numer. Anal. 33 (2013), no. 2, 377–402. 10.1093/imanum/drs022Suche in Google Scholar

[17] C. Engwer, An unfitted discontinuous Galerkin scheme for micro-scale simulations and numerical upscaling, PhD thesis, University of Heidelberg, 2009. Suche in Google Scholar

[18] C. Engwer and F. Heimann, Dune-UDG: A cut-cell framework for unfitted discontinuous Galerkin methods, Advances in DUNE, Springer, Berlin (2012), 89–100. 10.1007/978-3-642-28589-9_7Suche in Google Scholar

[19] C. Engwer and A. Nüßing, Geometric reconstruction of implicitly defined surfaces and domains with topological guarantees, ACM Trans. Math. Software 44 (2017), no. 2, Paper No. 14. 10.1145/3104989Suche in Google Scholar

[20] A. Ern, A. F. Stephansen and P. Zunino, A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity, IMA J. Numer. Anal. 29 (2009), no. 2, 235–256. 10.1093/imanum/drm050Suche in Google Scholar

[21] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491. 10.1090/S0002-9947-1959-0110078-1Suche in Google Scholar

[22] T.-P. Fries and S. Omerović, Higher-order accurate integration of implicit geometries, Internat. J. Numer. Methods Engrg. 106 (2016), no. 5, 323–371. 10.1002/nme.5121Suche in Google Scholar

[23] E. H. Georgoulis, E. Hall and P. Houston, Discontinuous Galerkin methods for advection-diffusion-reaction problems on anisotropically refined meshes, SIAM J. Sci. Comput. 30 (2007/08), no. 1, 246–271. 10.1137/060672352Suche in Google Scholar

[24] W. Giese, M. Eigel, S. Westerheide, C. Engwer and E. Klipp, Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models, Phys. Biol. 12 (2015), no. 6, Article ID 066014. 10.1088/1478-3975/12/6/066014Suche in Google Scholar

[25] J. Giesselmann and T. Müller, Geometric error of finite volume schemes for conservation laws on evolving surfaces, Numer. Math. 128 (2014), no. 3, 489–516. 10.1007/s00211-014-0621-5Suche in Google Scholar

[26] A. B. Goryachev and A. V. Pokhilko, Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity, FEBS Lett. 582 (2008), no. 10, 1437–1443. 10.1016/j.febslet.2008.03.029Suche in Google Scholar

[27] J. Grande, C. Lehrenfeld and A. Reusken, Analysis of a high-order trace finite element method for PDEs on level set surfaces, SIAM J. Numer. Anal. 56 (2018), no. 1, 228–255. 10.1137/16M1102203Suche in Google Scholar

[28] A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 47–48, 5537–5552. 10.1016/S0045-7825(02)00524-8Suche in Google Scholar

[29] A. Jilkine and L. Edelstein-Keshet, A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues, PLoS Comput. Biol. 7 (2011), no. 4, Article ID e1001121. 10.1371/journal.pcbi.1001121Suche in Google Scholar PubMed PubMed Central

[30] L. Ju and Q. Du, A finite volume method on general surfaces and its error estimates, J. Math. Anal. Appl. 352 (2009), no. 2, 645–668. 10.1016/j.jmaa.2008.11.022Suche in Google Scholar

[31] C. Lehrenfeld, High order unfitted finite element methods on level set domains using isoparametric mappings, Comput. Methods Appl. Mech. Engrg. 300 (2016), 716–733. 10.1016/j.cma.2015.12.005Suche in Google Scholar

[32] I. L. Novak, F. Gao, Y.-S. Choi, D. Resasco, J. C. Schaff and B. M. Slepchenko, Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology, J. Comput. Phys. 226 (2007), no. 2, 1271–1290. 10.1016/j.jcp.2007.05.025Suche in Google Scholar PubMed PubMed Central

[33] M. A. Olshanskii, A. Reusken and J. Grande, A finite element method for elliptic equations on surfaces, SIAM J. Numer. Anal. 47 (2009), no. 5, 3339–3358. 10.1137/080717602Suche in Google Scholar

[34] S. J. Ruuth and B. Merriman, A simple embedding method for solving partial differential equations on surfaces, J. Comput. Phys. 227 (2008), no. 3, 1943–1961. 10.1016/j.jcp.2007.10.009Suche in Google Scholar

[35] C. Waltermann and E. Klipp, Signal integration in budding yeast, Biochem. Soc. Trans. 38 (2010), no. 5, 1257–1264. 10.1042/BST0381257Suche in Google Scholar PubMed

[36] S. Westerheide, Unfitted discontinuous Galerkin schemes for applications with PDEs on complex-shaped surfaces, PhD thesis, University of Münster, 2018. Suche in Google Scholar

[37] M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15 (1978), no. 1, 152–161. 10.1137/0715010Suche in Google Scholar

[38] J.-J. Xu and H.-K. Zhao, An Eulerian formulation for solving partial differential equations along a moving interface, J. Sci. Comput. 19 (2003), no. 1, 573–594. 10.1023/A:1025336916176Suche in Google Scholar

Received: 2020-04-18
Revised: 2021-05-05
Accepted: 2021-05-06
Published Online: 2021-06-01
Published in Print: 2021-07-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2020-0056/html?lang=de
Button zum nach oben scrollen