Startseite A New Mixed Functional-probabilistic Approach for Finite Element Accuracy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A New Mixed Functional-probabilistic Approach for Finite Element Accuracy

  • Joël Chaskalovic und Franck Assous EMAIL logo
Veröffentlicht/Copyright: 15. April 2020

Abstract

The aim of this paper is to provide a new perspective on finite element accuracy. Starting from a geometrical reading of the Bramble–Hilbert lemma, we recall the two probabilistic laws we got in previous works that estimate the relative accuracy, considered as a random variable, between two finite elements P k and P m ( k < m ). Then we analyze the asymptotic relation between these two probabilistic laws when the difference m - k goes to infinity. New insights which qualify the relative accuracy in the case of high order finite elements are also obtained.

MSC 2010: 65N15; 65N75; 65N30

Acknowledgements

The authors want to warmly dedicate this research to pay homage to the memory of Professors André Avez and Gérard Tronel who largely promote the passion of research and teaching in mathematics.

References

[1] R. Arcangéli and J. L. Gout, Sur l’évaluation de l’erreur d’interpolation de Lagrange dans un ouvert de 𝐑 n , ESAIM Math. Model. Numer. Anal. 10 (1976), 5–27. 10.1051/m2an/197610R100051Suche in Google Scholar

[2] F. Assous and J. Chaskalovic, Data mining techniques for scientific computing: Application to asymptotic paraxial approximations to model ultrarelativistic particles, J. Comput. Phys. 230 (2011), no. 12, 4811–4827. 10.1016/j.jcp.2011.03.005Suche in Google Scholar

[3] F. Assous and J. Chaskalovic, Error estimate evaluation in numerical approximations of partial differential equations: A pilot study using data mining methods, C. R. Mecanique 341 (2013), 304–313. 10.1016/j.crme.2013.01.002Suche in Google Scholar

[4] I. Babuška, Error-bounds for finite element method, Numer. Math. 16 (1970/71), 322–333. 10.1007/BF02165003Suche in Google Scholar

[5] J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal. 7 (1970), 112–124. 10.1137/0707006Suche in Google Scholar

[6] H. Brezis, Analyse Fonctionnelle, Masson, Paris, 1983. Suche in Google Scholar

[7] J. Chaskalovic, Mathematical and Numerical Methods for Partial Differential Equations, Math. Eng., Springer, Cham, 2014. 10.1007/978-3-319-03563-5Suche in Google Scholar

[8] J. Chaskalovic and F. Assous, Data mining and probabilistic models for error estimate analysis of finite element method, Math. Comput. Simulation 129 (2016), 50–68. 10.1016/j.matcom.2016.03.013Suche in Google Scholar

[9] J. Chaskalovic and F. Assous, Probabilistic approach to characterize quantitative uncertainty in numerical approximations, Math. Model. Anal. 22 (2017), no. 1, 106–120. 10.3846/13926292.2017.1272499Suche in Google Scholar

[10] J. Chaskalovic and F. Assous, A new probabilistic interpretation of the Bramble–Hilbert lemma, Comput. Methods Appl. Math. 20 (2020), no. 1, 79–87. 10.1515/cmam-2018-0270Suche in Google Scholar

[11] P. G. Ciarlet, Basic Error Estimates for Elliptic Problems, Handbook of Numerical Analysis. Vol. II, North-Holland, Amsterdam (1991), 17–351. 10.1016/S1570-8659(05)80039-0Suche in Google Scholar

[12] P. G. Ciarlet and P.-A. Raviart, General Lagrange and Hermite interpolation in 𝐑 n with applications to finite element methods, Arch. Ration. Mech. Anal. 46 (1972), 177–199. 10.1007/BF00252458Suche in Google Scholar

[13] O. Furdui, Limits, Series, and Fractional Part Integrals, Springer, New York, 2013. 10.1007/978-1-4614-6762-5Suche in Google Scholar

[14] W. F. Mitchell, How high a degree is high enough for high order finite elements?, Proc. Comp. Sci. 15 (2015), 246–255. 10.1016/j.procs.2015.05.235Suche in Google Scholar

[15] P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles, Masson, Paris, 1983. Suche in Google Scholar

[16] G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, 1973. Suche in Google Scholar

Received: 2019-05-22
Revised: 2019-11-04
Accepted: 2020-03-09
Published Online: 2020-04-15
Published in Print: 2020-10-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Modern Problems of Numerical Analysis. On the Centenary of the Birth of Alexander Andreevich Samarskii
  4. Special Issue Articles
  5. Finite Difference Approximation of a Generalized Time-Fractional Telegraph Equation
  6. Weighted Estimates for Boundary Value Problems with Fractional Derivatives
  7. Lagrangian Mixed Finite Element Methods for Nonlinear Thin Shell Problems
  8. Reliable Computer Simulation Methods for Electrostatic Biomolecular Models Based on the Poisson–Boltzmann Equation
  9. Adaptive Space-Time Finite Element Methods for Non-autonomous Parabolic Problems with Distributional Sources
  10. On Convergence of Difference Schemes for Dirichlet IBVP for Two-Dimensional Quasilinear Parabolic Equations with Mixed Derivatives and Generalized Solutions
  11. Difference Schemes on Uniform Grids for an Initial-Boundary Value Problem for a Singularly Perturbed Parabolic Convection-Diffusion Equation
  12. A Finite Element Splitting Method for a Convection-Diffusion Problem
  13. Incomplete Iterative Implicit Schemes
  14. Explicit Runge–Kutta Methods Combined with Advanced Versions of the Richardson Extrapolation
  15. Regular Research Articles
  16. A General Superapproximation Result
  17. A First-Order Explicit-Implicit Splitting Method for a Convection-Diffusion Problem
  18. A Factorization of Least-Squares Projection Schemes for Ill-Posed Problems
  19. A New Mixed Functional-probabilistic Approach for Finite Element Accuracy
  20. Error Analysis of a Finite Difference Method on Graded Meshes for a Multiterm Time-Fractional Initial-Boundary Value Problem
  21. A Finite Element Method for Elliptic Dirichlet Boundary Control Problems
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2019-0089/html
Button zum nach oben scrollen