Startseite Block-Adaptive Cross Approximation of Discrete Integral Operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Block-Adaptive Cross Approximation of Discrete Integral Operators

  • Maximilian Bauer EMAIL logo und Mario Bebendorf
Veröffentlicht/Copyright: 5. Februar 2020

Abstract

In this article, we extend the adaptive cross approximation (ACA) method known for the efficient approximation of discretisations of integral operators to a block-adaptive version. While ACA is usually employed to assemble hierarchical matrix approximations having the same prescribed accuracy on all blocks of the partition, for the solution of linear systems, it may be more efficient to adapt the accuracy of each block to the actual error of the solution as some blocks may be more important for the solution error than others. To this end, error estimation techniques known from adaptive mesh refinement are applied to automatically improve the blockwise matrix approximation. This allows to interlace the assembling of the coefficient matrix with the iterative solution.

MSC 2010: 65N38

Award Identifier / Grant number: BE2626/4-1

Funding statement: This work was supported by the DFG project BE2626/4-1.

References

[1] M. Ainsworth and C. Glusa, Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver, Comput. Methods Appl. Mech. Engrg. 327 (2017), 4–35. 10.1016/j.cma.2017.08.019Suche in Google Scholar

[2] M. Aurada, M. Feischl, T. Führer, M. Karkulik and D. Praetorius, Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods, Comput. Methods Appl. Math. 13 (2013), no. 3, 305–332. 10.1515/cmam-2013-0010Suche in Google Scholar

[3] M. Aurada, S. Ferraz-Leite and D. Praetorius, Estimator reduction and convergence of adaptive BEM, Appl. Numer. Math. 62 (2012), no. 6, 787–801. 10.1016/j.apnum.2011.06.014Suche in Google Scholar PubMed PubMed Central

[4] M. Bebendorf, Approximation of boundary element matrices, Numer. Math. 86 (2000), no. 4, 565–589. 10.1007/PL00005410Suche in Google Scholar

[5] M. Bebendorf, Efficient inversion of the Galerkin matrix of general second-order elliptic operators with nonsmooth coefficients, Math. Comp. 74 (2005), no. 251, 1179–1199. 10.1090/S0025-5718-04-01716-8Suche in Google Scholar

[6] M. Bebendorf, Approximate inverse preconditioning of finite element discretizations of elliptic operators with nonsmooth coefficients, SIAM J. Matrix Anal. Appl. 27 (2006), no. 4, 909–929. 10.1137/S0895479803437621Suche in Google Scholar

[7] M. Bebendorf, Hierarchical Matrices, Lect. Notes Comput. Sci. Eng. 63, Springer, Berlin, 2008. Suche in Google Scholar

[8] M. Bebendorf, M. Bollhöfer and M. Bratsch, On the spectral equivalence of hierarchical matrix preconditioners for elliptic problems, Math. Comp. 85 (2016), no. 302, 2839–2861. 10.1090/mcom/3086Suche in Google Scholar

[9] M. Bebendorf and R. Grzhibovskis, Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation, Math. Methods Appl. Sci. 29 (2006), no. 14, 1721–1747. 10.1002/mma.759Suche in Google Scholar

[10] M. Bebendorf and W. Hackbusch, Stabilized rounded addition of hierarchical matrices, Numer. Linear Algebra Appl. 14 (2007), no. 5, 407–423. 10.1002/nla.525Suche in Google Scholar

[11] M. Bebendorf and R. Kriemann, Fast parallel solution of boundary integral equations and related problems, Comput. Vis. Sci. 8 (2005), no. 3–4, 121–135. 10.1007/s00791-005-0001-xSuche in Google Scholar

[12] M. Bebendorf and S. Rjasanow, Adaptive low-rank approximation of collocation matrices, Computing 70 (2003), no. 1, 1–24. 10.1007/s00607-002-1469-6Suche in Google Scholar

[13] Y. Chen, A fast, direct algorithm for the Lippmann–Schwinger integral equation in two dimensions, Adv. Comput. Math. 16 (2002), no. 2–3, 175–190. 10.1023/A:1014450116300Suche in Google Scholar

[14] M. D’Elia and M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator, Comput. Math. Appl. 66 (2013), no. 7, 1245–1260. 10.1016/j.camwa.2013.07.022Suche in Google Scholar

[15] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573. 10.1016/j.bulsci.2011.12.004Suche in Google Scholar

[16] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. 10.1137/0733054Suche in Google Scholar

[17] S. Ferraz-Leite and D. Praetorius, Simple a posteriori error estimators for the h-version of the boundary element method, Computing 83 (2008), no. 4, 135–162. 10.1007/s00607-008-0017-4Suche in Google Scholar

[18] T. Gantumur, Adaptive boundary element methods with convergence rates, Numer. Math. 124 (2013), no. 3, 471–516. 10.1007/s00211-013-0524-xSuche in Google Scholar

[19] S. A. Goreinov, E. E. Tyrtyshnikov and N. L. Zamarashkin, A theory of pseudoskeleton approximations, Linear Algebra Appl. 261 (1997), 1–21. 10.1016/S0024-3795(96)00301-1Suche in Google Scholar

[20] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987), no. 2, 325–348. 10.1016/0021-9991(87)90140-9Suche in Google Scholar

[21] L. Greengard and J. Strain, The fast Gauss transform, SIAM J. Sci. Statist. Comput. 12 (1991), no. 1, 79–94. 10.21236/ADA211287Suche in Google Scholar

[22] W. Hackbusch, A sparse matrix arithmetic based on -matrices. I. Introduction to -matrices, Computing 62 (1999), no. 2, 89–108. 10.1007/s006070050015Suche in Google Scholar

[23] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, Springer Ser. Comput. Math. 49, Springer, Heidelberg, 2015. 10.1007/978-3-662-47324-5Suche in Google Scholar

[24] W. Hackbusch and B. N. Khoromskij, A sparse -matrix arithmetic. II. Application to multi-dimensional problems, Computing 64 (2000), no. 1, 21–47. 10.1007/PL00021408Suche in Google Scholar

[25] M. Karkulik, G. Of and D. Praetorius, Convergence of adaptive 3D BEM for weakly singular integral equations based on isotropic mesh-refinement, Numer. Methods Partial Differential Equations 29 (2013), no. 6, 2081–2106. 10.1002/num.21792Suche in Google Scholar

[26] F. Lanzara, V. Maz’ya and G. Schmidt, Numerical solution of the Lippmann–Schwinger equation by approximate approximations, J. Fourier Anal. Appl. 10 (2004), no. 6, 645–660. 10.1007/s00041-004-3080-zSuche in Google Scholar

[27] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin and M. Tygert, Randomized algorithms for the low-rank approximation of matrices, Proc. Natl. Acad. Sci. USA 104 (2007), no. 51, 20167–20172. 10.1073/pnas.0709640104Suche in Google Scholar PubMed PubMed Central

[28] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, 1996. Suche in Google Scholar

[29] S. A. Sauter and C. Schwab, Boundary Element Methods, Springer Ser. Comput. Math. 39, Springer, Berlin, 2011. 10.1007/978-3-540-68093-2Suche in Google Scholar

[30] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems, Springer, New York, 2008. 10.1007/978-0-387-68805-3Suche in Google Scholar

[31] E. Tyrtyshnikov, Mosaic-skeleton approximations. Toeplitz matrices: Structures, algorithms and applications, Calcolo 33 (1996), no. 1–2, 47–57. 10.1007/BF02575706Suche in Google Scholar

Received: 2019-05-13
Revised: 2019-12-30
Accepted: 2020-01-13
Published Online: 2020-02-05
Published in Print: 2021-01-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2019-0085/html
Button zum nach oben scrollen