Startseite Mathematik Quasi-Optimal Rank-Structured Approximation to Multidimensional Parabolic Problems by Cayley Transform and Chebyshev Interpolation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Quasi-Optimal Rank-Structured Approximation to Multidimensional Parabolic Problems by Cayley Transform and Chebyshev Interpolation

  • Ivan Gavrilyuk und Boris N. Khoromskij EMAIL logo
Veröffentlicht/Copyright: 12. Juli 2018

Abstract

In the present paper we propose and analyze a class of tensor approaches for the efficient numerical solution of a first order differential equation ψ(t)+Aψ=f(t) with an unbounded operator coefficient A. These techniques are based on a Laguerre polynomial expansions with coefficients which are powers of the Cayley transform of the operator A. The Cayley transform under consideration is a useful tool to arrive at the following aims: (1) to separate time and spatial variables, (2) to switch from the continuous “time variable” to “the discrete time variable” and from the study of functions of an unbounded operator to the ones of a bounded operator, (3) to obtain exponentially accurate approximations. In the earlier papers of the authors some approximations on the basis of the Cayley transform and the N-term Laguerre expansions of the accuracy order 𝒪(e-N) were proposed and justified provided that the initial value is analytical for A. In the present paper we combine the Cayley transform and the Chebyshev–Gauss–Lobatto interpolation and arrive at an approximation of the accuracy order 𝒪(e-N) without restrictions on the input data. The use of the Laguerre expansion or the Chebyshev–Gauss–Lobatto interpolation allows to separate the time and space variables. The separation of the multidimensional spatial variable can be achieved by the use of low-rank approximation to the Cayley transform of the Laplace-like operator that is spectrally close to A. As a result a quasi-optimal numerical algorithm can be designed.

References

[1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover, New York, 1993. Suche in Google Scholar

[2] D. Z. Arov and I. P. Gavrilyuk, A method for solving initial value problems for linear differential equations in Hilbert space based on the Cayley transform, Numer. Funct. Anal. Optim. 14 (1993), no. 5–6, 459–473. 10.1080/01630569308816534Suche in Google Scholar

[3] D. Z. Arov, I. P. Gavrilyuk and V. L. Makarov, Representation and approximation of solutions of initial value problems for differential equations in Hilbert space based on the Cayley transform, Elliptic and Parabolic Problems (Pont-à-Mousson 1994), Pitman Res. Notes Math. Ser. 325, Longman Scientific & Technical, Harlow (1995), 40–50. Suche in Google Scholar

[4] H. Bateman and A. Erdelyi, Higher Transcendental Functions. Vol. 2, Mc Graw-Hill, New York, 1988. Suche in Google Scholar

[5] M. H. Beck, A. Jäckle, G. A. Worth and H.-D. Meyer, The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets, Phys. Rep. 324 (2000), 1–105. 10.1016/S0370-1573(99)00047-2Suche in Google Scholar

[6] P. Benner, V. Khoromskaia and B. N. Khoromskij, Range-separated tensor format for many-particle modeling, SIAM J. Sci. Comput. 40 (2018), no. 2, A1034–A1062. 10.1137/16M1098930Suche in Google Scholar

[7] S. Dolgov and B. Khoromskij, Simultaneous state-time approximation of the chemical master equation using tensor product formats, Numer. Linear Algebra Appl. 22 (2015), no. 2, 197–219. 10.1002/nla.1942Suche in Google Scholar

[8] S. V. Dolgov, B. N. Khoromskij and I. V. Oseledets, Fast solution of parabolic problems in the tensor train/quantized tensor train format with initial application to the Fokker–Planck equation, SIAM J. Sci. Comput. 34 (2012), no. 6, A3016–A3038. 10.1137/120864210Suche in Google Scholar

[9] I. P. Gavrilyuk, An algorithmic representation of fractional powers of positive operators, Numer. Funct. Anal. Optim. 17 (1996), no. 3–4, 293–305. 10.1080/01630569608816695Suche in Google Scholar

[10] I. P. Gavrilyuk, Strongly P-positive operators and explicit representations of the solutions of initial value problems for second-order differential equations in Banach space, J. Math. Anal. Appl. 236 (1999), no. 2, 327–349. 10.1006/jmaa.1999.6430Suche in Google Scholar

[11] I. P. Gavrilyuk, Super exponentially convergent approximation to the solution of the Schrödinger equation in abstract setting, Comput. Methods Appl. Math. 10 (2010), no. 4, 345–358. 10.2478/cmam-2010-0020Suche in Google Scholar

[12] I. P. Gavrilyuk, Three recipes for constructing of exponentially convergent algorithms for operator equations, Proceedings of the Second International Conference “Supercomputer Technologies of Mathematical Modeling”, M. K. Ammosov North-Eastern Federal University, Yakutsk (2014), 182–192. Suche in Google Scholar

[13] I. P. Gavrilyuk, W. Hackbusch and B. N. Khoromskij, Data-sparse approximation to a class of operator-valued functions, Math. Comp. 74 (2005), no. 250, 681–708. 10.1090/S0025-5718-04-01703-XSuche in Google Scholar

[14] I. P. Gavrilyuk, W. Hackbusch and B. N. Khoromskij, Hierarchical tensor-product approximation to the inverse and related operators for high-dimensional elliptic problems, Computing 74 (2005), no. 2, 131–157. 10.1007/s00607-004-0086-ySuche in Google Scholar

[15] I. P. Gavrilyuk and B. Khoromskij, Quantized-TT-Cayley transform for computing the dynamics and the spectrum of high-dimensional Hamiltonians, Comput. Methods Appl. Math. 11 (2011), no. 3, 273–290. 10.2478/cmam-2011-0015Suche in Google Scholar

[16] I. P. Gavrilyuk and V. L. Makarov, Representation and approximation of the solution of an initial value problem for a first order differential equation in Banach spaces, Z. Anal. Anwend. 15 (1996), no. 2, 495–527. 10.4171/ZAA/712Suche in Google Scholar

[17] I. P. Gavrilyuk and V. L. Makarov, Exact and approximate solutions of some operator equations based on the Cayley transform, Linear Algebra Appl. 282 (1998), no. 1–3, 97–121. 10.1016/S0024-3795(98)10050-2Suche in Google Scholar

[18] M. Griebel and J. Hamaekers, Sparse grids for the Schrödinger equation, M2AN Math. Model. Numer. Anal. 41 (2007), no. 2, 215–247. 10.1051/m2an:2007015Suche in Google Scholar

[19] M. Griebel, D. Oeltz and P. Vassilevski, Space-time approximation with sparse grids, SIAM J. Sci. Comput. 28 (2006), no. 2, 701–727. 10.1137/050629252Suche in Google Scholar

[20] W. Hackbusch and B. N. Khoromskij, Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. I. Separable approximation of multi-variate functions, Computing 76 (2006), no. 3–4, 177–202. 10.1007/s00607-005-0144-0Suche in Google Scholar

[21] W. Hackbusch, B. N. Khoromskij, S. Sauter and E. E. Tyrtyshnikov, Use of tensor formats in elliptic eigenvalue problems, Numer. Linear Algebra Appl. 19 (2012), no. 1, 133–151. 10.1002/nla.793Suche in Google Scholar

[22] W. Hackbusch, B. N. Khoromskij and E. E. Tyrtyshnikov, Approximate iterations for structured matrices, Numer. Math. 109 (2008), no. 3, 365–383. 10.1007/s00211-008-0143-0Suche in Google Scholar

[23] V. A. Kazeev and B. N. Khoromskij, Low-rank explicit QTT representation of the Laplace operator and its inverse, SIAM J. Matrix Anal. Appl. 33 (2012), no. 3, 742–758. 10.1137/100820479Suche in Google Scholar

[24] B. N. Khoromskij, Structured rank-(R1,,RD) decomposition of function-related tensors in D, Comput. Methods Appl. Math. 6 (2006), no. 2, 194–220. 10.2478/cmam-2006-0010Suche in Google Scholar

[25] B. N. Khoromskij, Tensor-structured preconditioners and approximate inverse of elliptic operators in d, Constr. Approx. 30 (2009), no. 3, 599–620. 10.1007/s00365-009-9068-9Suche in Google Scholar

[26] B. N. Khoromskij, O(dlogN)-quantics approximation of N-d tensors in high-dimensional numerical modeling, Constr. Approx. 34 (2011), no. 2, 257–280. 10.1007/s00365-011-9131-1Suche in Google Scholar

[27] B. N. Khoromskij, Tensors-structured numerical methods in scientific computing: Survey on recent advances, Chem. Intell. Lab. Syst. 110 (2012), 1–19. 10.1016/j.chemolab.2011.09.001Suche in Google Scholar

[28] B. N. Khoromskij, Tensor Numerical Methods in Scientific Computing, Radon Ser. Comput. Appl. Math. 19, De Gruyter, Berlin, 2018. 10.1515/9783110365917Suche in Google Scholar

[29] B. N. Khoromskij and I. Oseledets, DMRG+QTT approach to high-dimensional quantum molecular dynamics, Preprint 68/2010, Max Planck Institute for Mathematics in the Sciences, Leipzig, 2010. Suche in Google Scholar

[30] B. N. Khoromskij and I. V. Oseledets, QTT approximation of elliptic solution operators in higher dimensions, Russian J. Numer. Anal. Math. Modelling 26 (2011), no. 3, 303–322. 10.1515/rjnamm.2011.017Suche in Google Scholar

[31] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev. 51 (2009), no. 3, 455–500. 10.1137/07070111XSuche in Google Scholar

[32] U. Langer, S. E. Moore and M. Neumüller, Space-time isogeometric analysis of parabolic evolution problems, Comput. Methods Appl. Mech. Engrg. 306 (2016), 342–363. 10.1016/j.cma.2016.03.042Suche in Google Scholar

[33] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zur. Lect. Adv. Math., European Mathematical Society, Zürich, 2008. 10.4171/067Suche in Google Scholar

[34] C. Lubich, I. V. Oseledets and B. Vandereycken, Time integration of tensor trains, SIAM J. Numer. Anal. 53 (2015), no. 2, 917–941. 10.1137/140976546Suche in Google Scholar

[35] C. Lubich, T. Rohwedder, R. Schneider and B. Vandereycken, Dynamical approximation by hierarchical Tucker and tensor-train tensors, SIAM J. Matrix Anal. Appl. 34 (2013), no. 2, 470–494. 10.1137/120885723Suche in Google Scholar

[36] H.-D. Meyer, F. Gatti and G. A. Worth, Multidimensional Quantum Dynamics: MCTDH Theory and Applications, Willey-VCH, Wienheim, 2009. 10.1002/9783527627400Suche in Google Scholar

[37] I. V. Oseledets, Approximation of 2d×2d matrices using tensor decomposition, SIAM J. Matrix Anal. Appl. 31 (2009/10), no. 4, 2130–2145. 10.1137/090757861Suche in Google Scholar

[38] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33 (2011), no. 5, 2295–2317. 10.1137/090752286Suche in Google Scholar

[39] I. V. Oseledets and E. E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to use SVD in many dimensions, SIAM J. Sci. Comput. 31 (2009), no. 5, 3744–3759. 10.1137/090748330Suche in Google Scholar

[40] D. Perez-Garcia, F. Verstraete, M. M. Wolf and J. I. Cirac, Matrix product state representations, Quantum Inf. Comput. 7 (2007), no. 5–6, 401–430. 10.26421/QIC7.5-6-1Suche in Google Scholar

[41] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer Ser. Comput. Math. 20, Springer, New York, 1993. 10.1007/978-1-4612-2706-9Suche in Google Scholar

[42] P. K. Suetin, Classical Orthogonal Polynomials (in Russian), “Nauka”, Moscow, 1979. Suche in Google Scholar

[43] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, American Mathematical Society, Providence, 1959. Suche in Google Scholar

[44] E. Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods, SIAM J. Numer. Anal. 23 (1986), no. 1, 1–10. 10.1137/0723001Suche in Google Scholar

[45] G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett. 91 (2003), no. 14, Article ID 147902. 10.1103/PhysRevLett.91.147902Suche in Google Scholar PubMed

[46] T. von Petersdorff and C. Schwab, Numerical solution of parabolic equations in high dimensions, M2AN Math. Model. Numer. Anal. 38 (2004), no. 1, 93–127. 10.1051/m2an:2004005Suche in Google Scholar

[47] H. Wang and M. Thoss, Multilayer formulation of the multiconfiguration time-dependent Hartree theory, J. Chem. Phys. 119 (2003), 1289–1299. 10.1002/9783527627400.ch14Suche in Google Scholar

[48] S. R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B 48 (1993), no. 14, 10345–10356. 10.1103/PhysRevB.48.10345Suche in Google Scholar

Received: 2017-12-01
Revised: 2018-02-21
Accepted: 2018-05-02
Published Online: 2018-07-12
Published in Print: 2019-01-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2018-0021/html?lang=de
Button zum nach oben scrollen