Startseite Minimax Rates for Statistical Inverse Problems Under General Source Conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Minimax Rates for Statistical Inverse Problems Under General Source Conditions

  • Litao Ding und Peter Mathé EMAIL logo
Veröffentlicht/Copyright: 5. Dezember 2017

Abstract

We describe the minimax reconstruction rates in linear ill-posed equations in Hilbert space when smoothness is given in terms of general source sets. The underlying fundamental result, the minimax rate on ellipsoids, is proved similarly to the seminal study by D. L. Donoho, R. C. Liu, and B. MacGibbon [4]. These authors highlighted the special role of the truncated series estimator, and for such estimators the risk can explicitly be given. We provide several examples, indicating results for statistical estimation in ill-posed problems in Hilbert space.

MSC 2010: 65J22; 62G20

Award Identifier / Grant number: 11331004

Award Identifier / Grant number: 11421110002

Funding statement: The first author is supported by the National Natural Science Foundation of China (Grants No. 11331004 and No. 11421110002) and the Program of Introducing Talents of Discipline to Universities (Grant No. B08018).

References

[1] N. Bissantz, T. Hohage, A. Munk and F. Ruymgaart, Convergence rates of general regularization methods for statistical inverse problems and applications, SIAM J. Numer. Anal. 45 (2007), no. 6, 2610–2636. 10.1137/060651884Suche in Google Scholar

[2] L. Cavalier, Nonparametric statistical inverse problems, Inverse Problems 24 (2008), no. 3, Article ID 034004. 10.1088/0266-5611/24/3/034004Suche in Google Scholar

[3] D. L. Donoho, R. C. Liu and B. MacGibbon, Minimax risk for hyperrectangles, Technical Report 123, Department of Statistics, University of California, Berkeley, 1988. Suche in Google Scholar

[4] D. L. Donoho, R. C. Liu and B. MacGibbon, Minimax risk over hyperrectangles, and implications, Ann. Statist. 18 (1990), no. 3, 1416–1437. 10.1214/aos/1176347758Suche in Google Scholar

[5] B. Laurent, J.-M. Loubes and C. Marteau, Non asymptotic minimax rates of testing in signal detection with heterogeneous variances, Electron. J. Stat. 6 (2012), 91–122. 10.1214/12-EJS667Suche in Google Scholar

[6] J.-M. Loubes and V. Rivoirard, Review of rates of convergence and regularity conditions for inverse problems, Int. J. Tomogr. Stat. 11 (2009), no. S09, 61–82. Suche in Google Scholar

[7] B. A. Mair and F. H. Ruymgaart, Statistical inverse estimation in Hilbert scales, SIAM J. Appl. Math. 56 (1996), no. 5, 1424–1444. 10.1137/S0036139994264476Suche in Google Scholar

[8] P. Mathé and S. V. Pereverzev, Geometry of linear ill-posed problems in variable Hilbert scales, Inverse Problems 19 (2003), no. 3, 789–803. 10.1088/0266-5611/19/3/319Suche in Google Scholar

[9] P. Mathé and S. V. Pereverzev, Regularization of some linear ill-posed problems with discretized random noisy data, Math. Comp. 75 (2006), no. 256, 1913–1929. 10.1090/S0025-5718-06-01873-4Suche in Google Scholar

[10] M. S. Pinsker, Optimal filtration of square-integrable signals in Gaussian noise, Probl. Inf. Transm. 16 (1980), no. 2, 52–68. Suche in Google Scholar

Received: 2017-08-09
Revised: 2017-10-30
Accepted: 2017-11-17
Published Online: 2017-12-05
Published in Print: 2018-10-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2017-0055/html
Button zum nach oben scrollen