Startseite GMRES Convergence Bounds for Eigenvalue Problems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

GMRES Convergence Bounds for Eigenvalue Problems

  • Melina A. Freitag , Patrick Kürschner EMAIL logo und Jennifer Pestana
Veröffentlicht/Copyright: 7. Juni 2017

Abstract

The convergence of GMRES for solving linear systems can be influenced heavily by the structure of the right-hand side. Within the solution of eigenvalue problems via inverse iteration or subspace iteration, the right-hand side is generally related to an approximate invariant subspace of the linear system. We give detailed and new bounds on (block) GMRES that take the special behavior of the right-hand side into account and explain the initial sharp decrease of the GMRES residual. The bounds motivate the use of specific preconditioners for these eigenvalue problems, e.g., tuned and polynomial preconditioners, as we describe. The numerical results show that the new (block) GMRES bounds are much sharper than conventional bounds and that preconditioned subspace iteration with either a tuned or polynomial preconditioner should be used in practice.

Acknowledgements

The authors thank Kirk Soodhalter (Radon Institute for Computational and Applied Mathematics (RICAM)) for kindly providing his Matlab implementation of block-GMRES.

References

[1] M. I. Ahmad, D. B. Szyld and M. B. van Gijzen, Preconditioned multishift BiCG for 2-optimal model reduction, SIAM J. Matrix Anal. Appl. 38 (2017), no. 2, 401–424. 10.1137/130914905Suche in Google Scholar

[2] M. Arioli, V. Pták and Z. Strakoš, Krylov sequences of maximal length and convergence of GMRES, BIT 38 (1998), 636–643. 10.1007/BF02510405Suche in Google Scholar

[3] S. F. Ashby, T. A. Manteuffel and J. S. Otto, A comparison of adaptive Chebyshev and least squares polynomial preconditioning for Hermitian positive definite linear systems, SIAM J. Sci. Statist. Comput. 13 (1992), no. 1, 1–29. 10.1137/0913001Suche in Google Scholar

[4] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. A. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed., SIAM, Philadelphia, 1994. 10.1137/1.9781611971538Suche in Google Scholar

[5] M. Baumann and M. van Gijzen, Nested Krylov methods for shifted linear systems, SIAM J. Sci. Comput. 37 (2015), 90–112. 10.1137/140979927Suche in Google Scholar

[6] J. Berns-Müller, I. G. Graham and A. Spence, Inexact inverse iteration for symmetric matrices, Linear Algebra Appl. 416 (2006), no. 2, 389–413. 10.1016/j.laa.2005.11.019Suche in Google Scholar

[7] L. Du, T. Sogabe and S.-L. Zhang, IDR(s) for solving shifted nonsymmetric linear systems, J. Comput. Appl. Math. 274 (2015), no. 0, 35–43. 10.1016/j.cam.2014.07.004Suche in Google Scholar

[8] J. Duintjer Tebbens and G. Meurant, Prescribing the behavior of early terminating GMRES and Arnoldi iterations, Numer. Algorithms 65 (2014), 69–90. 10.1007/s11075-013-9695-xSuche in Google Scholar

[9] M. A. Freitag, Inner-outer iterative methods for eigenvalue problems – Convergence and preconditioning, Ph.D. thesis, University of Bath, 2007. Suche in Google Scholar

[10] M. A. Freitag and A. Spence, Convergence theory for inexact inverse iteration applied to the generalised nonsymmetric eigenproblem, Electron. Trans. Numer. Anal. 28 (2007), 40–64. Suche in Google Scholar

[11] M. A. Freitag and A. Spence, A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems, IMA J. Numer. Anal. 28 (2008), no. 3, 522–551. 10.1093/imanum/drm036Suche in Google Scholar

[12] M. A. Freitag, A. Spence and E. Vainikko, Rayleigh quotient iteration and simplified Jacobi–Davidson with preconditioned iterative solves for generalised eigenvalue problems, Technical Report, University of Bath, 2008. 10.1016/j.laa.2007.11.013Suche in Google Scholar

[13] R. Freund, On conjugate gradient type methods and polynomial preconditioners for a class of complex non-hermitian matrices, Numer. Math. 57 (1990), no. 1, 285–312. 10.1007/BF01386412Suche in Google Scholar

[14] G. H. Golub and Q. Ye, Inexact inverse iteration for generalized eigenvalue problems, BIT 40 (2000), no. 4, 671–684. 10.1023/A:1022388317839Suche in Google Scholar

[15] I. C. Ipsen, Computing an eigenvector with inverse iteration, SIAM Rev. 39 (1997), no. 2, 254–291. 10.1137/S0036144596300773Suche in Google Scholar

[16] Q. Liu, R. B. Morgan and W. Wilcox, Polynomial Preconditioned GMRES and GMRES-DR, SIAM J. Sci. Comput. 37 (2015), no. 5, S407–S428. 10.1137/140968276Suche in Google Scholar

[17] A. Martinez, Tuned preconditioners for the eigensolution of large SPD matrices arising in engineering problems, Numer. Linear Algebra Appl. 23 (2016), no. 3, 427–443. 10.1002/nla.2032Suche in Google Scholar

[18] G. Meurant and J. Duintjer Tebbens, The role eigenvalues play in forming GMRES residual norms with non-normal matrices, Numer. Algorithms 68 (2015), 143–165. 10.1007/s11075-014-9891-3Suche in Google Scholar

[19] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (1975), no. 4, 617–629. 10.1137/0712047Suche in Google Scholar

[20] M. L. Parks, K. M. Soodhalter and D. B. Szyld, A block Recycled GMRES method with investigations into aspects of solver performance, preprint (2016), https://arxiv.org/abs/1604.01713. Suche in Google Scholar

[21] G. Peters and J. H. Wilkinson, Inverse iteration, ill-conditioned equations and Newton’s method, SIAM Rev. 21 (1979), no. 3, 339–360. 10.1137/1021052Suche in Google Scholar

[22] M. Robbé, M. Sadkane and A. Spence, Inexact inverse subspace iteration with preconditioning applied to non-hermitian eigenvalue problems, SIAM J. Matrix Anal. Appl. 31 (2009), no. 1, 92–113. 10.1137/060673795Suche in Google Scholar

[23] Y. Saad, A Flexible Inner-Outer Preconditioned GMRES Algorithm, SIAM J. Sci. Comput. 14 (1993), no. 2, 461–469. 10.1137/0914028Suche in Google Scholar

[24] Y. Saad and M. Schultz, GMRES a generalised minimum residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986), 856–869. 10.1137/0907058Suche in Google Scholar

[25] V. Simoncini and L. Eldén, Inexact Rayleigh quotient-type methods for eigenvalue computations, BIT 42 (2002), no. 1, 159–182. 10.1023/A:1021930421106Suche in Google Scholar

[26] K. Soodhalter, A block MINRES algorithm based on the banded Lanczos method, Numer. Algorithms 69 (2015), 473–494. 10.1007/s11075-014-9907-zSuche in Google Scholar

[27] D. Szyld and F. Xue, Efficient preconditioned inner solves for inexact Rayleigh quotient iteration and their connections to the single-vector Jacobi–Davidson method, SIAM J. Matrix Anal. A 32 (2011), no. 3, 993–1018. 10.1137/100807922Suche in Google Scholar

[28] D. Titley-Peloquin, J. Pestana and A. J. Wathen, GMRES convergence bounds that depend on the right-hand-side vector, IMA J. Numer. Anal. 34 (2014), 462–479. 10.1093/imanum/drt025Suche in Google Scholar

[29] M. B. van Gijzen, A polynomial preconditioner for the GMRES algorithm, J. Comput. Appl. Math. 59 (1995), no. 1, 91–107. 10.1016/0377-0427(94)00015-SSuche in Google Scholar

[30] M. B. van Gijzen, G. L. G. Sleijpen and J.-P. M. Zemke, Flexible and multi-shift induced dimension reduction algorithms for solving large sparse linear systems, Numer. Linear Algebra Appl. 22 (2015), no. 1, 1–25. 10.1002/nla.1935Suche in Google Scholar

[31] F. Xue and H. C. Elman, Fast inexact subspace iteration for generalized eigenvalue problems with spectral transformation, Linear Algebra Appl. 435 (2011), no. 3, 601–622. 10.1016/j.laa.2010.06.021Suche in Google Scholar

Received: 2016-9-19
Revised: 2017-3-3
Accepted: 2017-5-24
Published Online: 2017-6-7
Published in Print: 2018-4-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2017-0017/html
Button zum nach oben scrollen