Startseite On Finite Element Formulations for the Obstacle Problem – Mixed and Stabilised Methods
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On Finite Element Formulations for the Obstacle Problem – Mixed and Stabilised Methods

  • Tom Gustafsson , Rolf Stenberg EMAIL logo und Juha Videman
Veröffentlicht/Copyright: 8. Juni 2017

Abstract

We discuss the differences between the penalty, mixed and stabilised methods for the finite element approximation of the obstacle problem. The theoretical properties of the methods are discussed and illustrated through numerical examples.

MSC 2010: 65K15; 65N30

Funding source: Tekes

Award Identifier / Grant number: 3305/31/2015

Funding statement: Funding from Tekes – the Finnish Funding Agency for Innovation (Decision No. 3305/31/2015) and the Finnish Cultural Foundation is gratefully acknowledged.

References

[1] I. Babuška, Error-bounds for finite element method, Numer. Math. 16 (1970/71), 322–333. 10.1007/BF02165003Suche in Google Scholar

[2] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1973), 179–192. 10.1007/BF01436561Suche in Google Scholar

[3] H. J. C. Barbosa and T. J. R. Hughes, The finite element method with Lagrange multipliers on the boundary: Circumventing the Babuška–Brezzi condition, Comput. Methods Appl. Mech. Engrg. 85 (1991), 109–128. 10.1016/0045-7825(91)90125-PSuche in Google Scholar

[4] R. Becker, P. Hansbo and R. Stenberg, A finite element method for domain decomposition with non-matching grids, M2AN Math. Model. Numer. Anal. 37 (2003), 209–225. 10.1051/m2an:2003023Suche in Google Scholar

[5] D. Braess, Finite Elements, 3rd ed., Cambridge University Press, Cambridge, 2007. 10.1017/CBO9780511618635Suche in Google Scholar

[6] D. Braess, C. Carstensen and R. H. W. Hoppe, Error reduction in adaptive finite element approximations of elliptic obstacle problems, J. Comput. Math. 27 (2009), 148–169. Suche in Google Scholar

[7] H. Brezis, Nouveaux théorèmes de régularité pour les problèmes unilatéraux, Les Rencontres Physiciens-Mathématiciens de Strasbourg – RCP 25, Université Louis Pasteur, Strasbourg (1971), 1–14. Suche in Google Scholar

[8] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Rech. Opér. Sér. Rouge 8 (1974), 129–151. 10.1051/m2an/197408R201291Suche in Google Scholar

[9] F. Brezzi, W. W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities. II: Mixed methods, Numer. Math. 31 (1978/79), 1–16. 10.1007/BF01396010Suche in Google Scholar

[10] F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, Efficient Solutions of Elliptic Systems (Kiel 1984), Notes Numer. Fluid Mech. 10, Friedr. Vieweg, Braunschweig (1984), 11–19. 10.1007/978-3-663-14169-3_2Suche in Google Scholar

[11] E. Burman, P. Hansbo, M. G. Larson and R. Stenberg, Galerkin least squares finite element method for the obstacle problem, Comput. Methods Appl. Mech. Engrg. 313 (2016), 362–374. 10.1016/j.cma.2016.09.025Suche in Google Scholar

[12] F. Chouly and P. Hild, A Nitsche-based method for unilateral contact problems: Numerical analysis, SIAM J. Numer. Anal. 51 (2013), 1295–1307. 10.1137/12088344XSuche in Google Scholar

[13] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies Math. Appl. 4, North-Holland, Amsterdam, 1978. 10.1115/1.3424474Suche in Google Scholar

[14] R. S. Falk, Error estimates for the approximation of a class of variational inequalities, Math. Comp. 28 (1974), 963–971. 10.1090/S0025-5718-1974-0391502-8Suche in Google Scholar

[15] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Sci. Comput., Springer, Berlin, 2008. Suche in Google Scholar

[16] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Stud. Appl. Math. 9, Society for Industrial and Applied Mathematics, Philadelphia, 1989. 10.1137/1.9781611970838Suche in Google Scholar

[17] T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp. 79 (2010), 2169–2189. 10.1090/S0025-5718-10-02360-4Suche in Google Scholar

[18] T. Gustafsson, R. Stenberg and J. Videman, Mixed and stabilized finite element methods for the obstacle problem, SIAM J. Numer. Anal., to appear. 10.1137/16M1065422Suche in Google Scholar

[19] P. Hild and Y. Renard, A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics, Numer. Math. 115 (2010), 101–129. 10.1007/s00211-009-0273-zSuche in Google Scholar

[20] M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as semismooth newton method, SIAM J. Optim. 13 (2003), 865–888. 10.1137/S1052623401383558Suche in Google Scholar

[21] I. Hlaváček, J. Haslinger, J. Nečas and J. Lovíšek, Solution of Variational Inequalities in Mechanics, Appl. Math. Sci. 66, Springer, New York, 1988. 10.1007/978-1-4612-1048-1Suche in Google Scholar

[22] T. J. R. Hughes, L. P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg. 59 (1986), 85–99. 10.1016/0045-7825(86)90025-3Suche in Google Scholar

[23] C. Johnson, Adaptive finite element methods for the obstacle problem, Math. Models Methods Appl. Sci. 2 (1992), 483–487. 10.1142/S0218202592000284Suche in Google Scholar

[24] M. Juntunen and R. Stenberg, Nitsche’s method for general boundary conditions, Math. Comp. 78 (2009), 1353–1374. 10.1090/S0025-5718-08-02183-2Suche in Google Scholar

[25] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. Suche in Google Scholar

[26] J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493–519. 10.1002/cpa.3160200302Suche in Google Scholar

[27] N. Lüthen, M. Juntunen and R. Stenberg, An improved a priori error analysis of Nitsche’s method for Robin boundary conditions, preprint (2015), https://arxiv.org/abs/1502.06515. 10.1007/s00211-017-0927-1Suche in Google Scholar

[28] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hambg. 36 (1971), 9–15. 10.1007/BF02995904Suche in Google Scholar

[29] R. Nochetto, K. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems, Numer. Math. 95 (2003), 163–195. 10.1007/s00211-002-0411-3Suche in Google Scholar

[30] R. Pierre, Simple C0 approximations for the computation of incompressible flows, Comput. Methods Appl. Mech. Engrg. 68 (1988), 205–227. 10.1016/0045-7825(88)90116-8Suche in Google Scholar

[31] J. Pitkäranta, Analysis of some low-order finite element schemes for Mindlin–Reissner and Kirchhoff plates, Numer. Math. 53 (1988), 237–254. 10.1007/BF01395887Suche in Google Scholar

[32] R. Scholz, Numerical solution of the obstacle problem by the penalty method, Computing 32 (1984), 297–306. 10.1007/BF02243774Suche in Google Scholar

[33] R. Stenberg, Mortaring by a method of J. A. Nitsche, Computational Mechanics. New Trends and Applications, CIMNE, Barcelona (1988), 1–6. Suche in Google Scholar

[34] R. Stenberg, On some techniques for approximating boundary conditions in the finite element method, J. Comput. Appl. Math. 63 (1995), 139–148. 10.1016/0377-0427(95)00057-7Suche in Google Scholar

[35] M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, MOS-SIAM Ser. Optim., Society for Industrial and Applied Mathematics, Philadelphia, 2011. 10.1137/1.9781611970692Suche in Google Scholar

[36] Q. Zou, A. Veeser, R. Kornhuber and C. Gräser, Hierarchical error estimates for the energy functional in obstacle problems, Numer. Math. 117 (2011), 653–677. 10.1007/s00211-011-0364-5Suche in Google Scholar

Received: 2017-2-5
Accepted: 2017-5-10
Published Online: 2017-6-8
Published in Print: 2017-7-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2017-0011/html
Button zum nach oben scrollen