Abstract.
In the present paper it is shown that the interpolation problem for multiple knot cardinal splines subject to general interpolation conditions has a unique solution with polynomial growth if the data grow correspondingly provided a certain determinantal condition is satisfied. An application to Hs error estimates for the interpolation with periodic multiple knot splines is given.
Keywords: Periodic Multiple Knot Cardinal Splines; Interpolation; Eigensplines; Sign Properties of Eigenvalues; Error Estimates in Sobolev Spaces
Published Online: 2013-01-03
Published in Print: 2013-01-01
© 2013 by Walter de Gruyter Berlin Boston
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Masthead
- A Robust Preconditioned MinRes Solver for Time-periodic Eddy Current Problems
- Robust Approximation of Singularly Perturbed Delay Differential Equations by the hp Finite Element Method
- On Cardinal Spline Interpolation
- Convection Problems on Anisotropic Meshes
- Pointwise Error Estimates for the LDG Method Applied to 1-d Singularly Perturbed Reaction-Diffusion Problems
- Implementing Galerkin Finite Element Methods for Semilinear Elliptic Differential Inclusions
Schlagwörter für diesen Artikel
Periodic Multiple Knot Cardinal Splines;
Interpolation;
Eigensplines;
Sign Properties of Eigenvalues;
Error Estimates in Sobolev Spaces
Artikel in diesem Heft
- Masthead
- A Robust Preconditioned MinRes Solver for Time-periodic Eddy Current Problems
- Robust Approximation of Singularly Perturbed Delay Differential Equations by the hp Finite Element Method
- On Cardinal Spline Interpolation
- Convection Problems on Anisotropic Meshes
- Pointwise Error Estimates for the LDG Method Applied to 1-d Singularly Perturbed Reaction-Diffusion Problems
- Implementing Galerkin Finite Element Methods for Semilinear Elliptic Differential Inclusions