Abstract
A novel polymeric ionic liquid (PIL), bearing high C-N and N-N content, potentially suitable for new safe energetic materials and catalyst supports was introduced. The PIL was prepared by way of radical co-polymerisation of 1-vinyl-3-p-nitrobenzylimidazolium bromide and 1-vinylimidazole at 80◦C using azobisisobutyronitrile (AIBN) as an initiator. The PIL thus produced was successfully transformed into NO3@PIL and N3@PIL for potential application as safe energetic materials and/or catalyst supports. The polymers were obtained in quantitative yields and were characterised by NMR, FTIR, DSC and TGA data. This study reveals the adequate thermal stability of novel salt-based nitrogen-rich polymeric ionic liquids for application as safe energetic materials and/or supports in heterogeneous catalysis.
References
Appetecchi, G. B., Kim, G. T., Montanino, M., Carewska, M., Marcilla, R., Mecerreyes, D., & De Meatza, I. (2010). Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. Journal of Power Sources, 195, 3668-3675. DOI: 10.1016/j.jpowsour.2009.11. 146.Suche in Google Scholar
Brazel, C. S., & Rogers, R. D. (Eds.) (2005). Ionic liquids in polymer systems: Solvents, additives, and novel applications (ACS symposium series, Vol. 913). Washington, DC, USA: American Chemical Society.10.1021/bk-2005-0913Suche in Google Scholar
Chambreau, S. D., Schneider, S., Rosander, M., Hawkins, T., Gallegos, C. J., Pastewait, M. F., & Vaghjiani, G. L. (2008). Fourier transform infrared studies in hypergolic ignition of ionic liquids. The Journal of Physical Chemistry A, 112, 7816-7824. DOI: 10.1021/jp8038175.10.1021/jp8038175Suche in Google Scholar
Champagne, P. A., Benhassine, Y., Desroches, J., & Paquin, J. F. (2014). Friedel-Crafts reaction of benzyl fluorides: Selective activation of C-F bonds as enabled by hydrogen bonding. Angewandte Chemie International Edition, 53, 13835-13839. DOI: 10.1002/anie.201406088.10.1002/anie.201406088Suche in Google Scholar
Cserjési, P., & Bélafi-Bakó, K. (2011). Application of ionic liquids in membrane separation processes, ionic liquids. In A. Kokorin (Ed.), Ionic liquids: Applications and perspectives (Chapter 25, pp. 561-586). Rijeka, Croatia: InTech. DOI: 10.5772/14862.10.5772/14862Suche in Google Scholar
Demirci, S., & Sahiner, N. (2014). PEI-based ionic liquid colloids for versatile use: Biomedical and environmental applications. Journal of Molecular Liquids, 194, 85-92. DOI: 10.1016/j.molliq.2014.01.015.10.1016/j.molliq.2014.01.015Suche in Google Scholar
Drake, G., Hawkins, T., Brand, A., Hall, L., Mckay, M., Vij, A., & Ismail, I. (2003). Energetic, low-melting salts of simple heterocycles. Propellants, Explosives, Pyrotechnics, 28, 174-180. DOI: 10.1002/prep.200300002.10.1002/prep.200300002Suche in Google Scholar
Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 102, 3667-3692. DOI: 10.1021/cr010338r.10.1021/cr010338rSuche in Google Scholar
Gordon, C. M. (2001). New developments in catalysis using ionic liquids. Applied Catalysis A: General, 222, 101-117. DOI: 10.1016/s0926-860x(01)00834-1.10.1016/S0926-860X(01)00834-1Suche in Google Scholar
Hardacre, C., & Parvulescu, V. (Eds.) (2014). Catalysis in ionic liquids: From catalyst synthesis to application (RSC catalysis series No. 15). Cambridge, UK: The Royal Society of Chemistry.10.1039/9781849737210Suche in Google Scholar
He, L., Tao, G. H., Parrish, D. A., & Shreeve, J. M. (2010). Nitrocyanamide-based ionic liquids and their potential applications as hypergolic fuels. Chemistry - A European Journal, 16, 5736-5743. DOI: 10.1002/chem.200902651. 10.1002/chem.200902651Suche in Google Scholar PubMed
Hiskey, M.A., Chavez, D.,Naud, D. L., Son, S. F., Berghout, H. L., & Bolme, C. A. (2000). Progress in high-nitrogen chemistry in explosives, propellants and pyrotechnics. In Proceedings of the International Pyrotechnics Seminars, July 12-18, 2000 (Vol. 27, pp. 3-14). Grand Junction, CO, USA. Marshall, TX, USA: IPSUSA Seminars.Suche in Google Scholar
Joo, Y. H., Gao, H., Zhang, Y., & Shreeve, J. M. (2010). Inorganic or organic azide-containing hypergolic ionic liquids. Inorganic Chemistry, 49, 3282-3288. DOI: 10.1021/ic902224t.10.1021/ic902224tSuche in Google Scholar PubMed
Köhler, J., & Meyer, R. (2009). Explosivstoffe: Neunte, uberarbietete und erweiterte Auflage (9th ed.). Weinheim, Germany: Wiley. (in German) Suche in Google Scholar
Lewandowski, A., & ´Swiderska-Mocek, A. (2009). Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies. Journal of Power Sources, 194, 601-609. DOI: 10.1016/j.jpowsour.2009.06.089.10.1016/j.jpowsour.2009.06.089Suche in Google Scholar
Li, M., Yang, L., Fang, S., Dong, S., Hirano, S., & Tachibana, K. (2011). Polymer electrolytes containing guanidiniumbased polymeric ionic liquids for rechargeable lithium batteries. Journal of Power Sources, 196, 8662-8668. DOI: 10.1016/j.jpowsour.2011.06.059.10.1016/j.jpowsour.2011.06.059Suche in Google Scholar
Marcilla, R., Alcaide, F., Sardon, H., Pomposo, J. A., Pozo- Gonzalo, C., & Mecerreyes, D. (2006). Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochemistry Communications, 8, 482-488. DOI: 10.1016/j.elecom.2006.01.013.10.1016/j.elecom.2006.01.013Suche in Google Scholar
Marwani, H. M., & Bakhsh, E. M. (2013). Silica gel supported hydrophobic ionic liquid for selective extraction and determination of coumarin. American Journal of Analytical Chemistry, 4, 8-16. DOI: 10.4236/ajac.2013.41002.10.4236/ajac.2013.41002Suche in Google Scholar
Mehrkesh, A., & Karunanithi, A. T. (2013). Energetic ionic materials: How green are they? A comparative life cycle assessment study. ACS Sustainable Chemistry & Engineering, 1, 448-455. DOI: 10.1021/sc3001383.10.1021/sc3001383Suche in Google Scholar
Nielsen, A. T. (1995). Nitrocarbons (Organic nitro chemistry series). New York, NY, USA:Wiley.Suche in Google Scholar
Ohno, H., & Ito, K. (1998). Room-temperature molten salt polymers as a matrix for fast ion conduction. Chemistry Letters, 27, 751-752. DOI: 10.1246/cl.1998.751.10.1246/cl.1998.751Suche in Google Scholar
Ohno, H. (2005). Electrochemical aspects of ionic liquids. Hoboken, NJ, USA: Wiley.10.1002/0471762512Suche in Google Scholar
Olivier-Bourbigou, H., Magna, L., & Morvan, D. (2010). Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General, 373, 1-56. DOI: 10.1016/j.apcata.2009.10.008.10.1016/j.apcata.2009.10.008Suche in Google Scholar
Rogers, R. D., & Seddon, K. R. (2002). Ionic liquids: Industrial applications for green chemistry (ACS symposium series, Vol. 818). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-2002-0818.10.1021/bk-2002-0818Suche in Google Scholar
Sahiner, N., & Alpaslan, D. (2014). Metal-ion-containing ionic liquid hydrogels and their application to hydrogen production. Journal of Applied Polymer Science, 131, 40183. DOI: 10.1002/app.40183.10.1002/app.40183Suche in Google Scholar
Sahiner, N., Turhan, T., & Lyon, L. A. (2014). ILC (ionic liquid colloids) based on p(4-VP) (poly(4-vinyl pyridine)) microgels: Synthesis, characterization and use in hydrogen production. Energy, 66, 256-263. DOI: 10.1016/j.energy.2013.12. 053.Suche in Google Scholar
Schneider, S., Hawkins, T., Rosander, M., Vaghjiani, G., Chambreau, S., & Drake, G. (2008). Ionic liquids as hypergolic fuels. Energy & Fuels, 22, 2871-2872. DOI: 10.1021/ef800286b.10.1021/ef800286bSuche in Google Scholar
Sheldon, R. (2001). Catalytic reactions in ionic liquids. Chemical Communications, 2001, 2399-2407. DOI: 10.1039/b107 270f.Suche in Google Scholar
Singh, R. P., Verma, R. D., Meshri, D. T., & Shreeve, J. M. (2006). Energetic nitrogen-rich salts and ionic liquids. Angewandte Chemie International Edition, 45, 3584-3601. DOI: 10.1002/anie.200504236.10.1002/anie.200504236Suche in Google Scholar
Singh, R. P., Gao, H., Meshri, D. T., & Shreeve, J. M. (2007).Suche in Google Scholar
Nitrogen-rich heterocycles. In T. M. Klap¨otke (Ed.), High energy density materials (Series: Structure and bonding, Vol. 125, pp. 35-83). DOI: 10.1007/430 2006 055.Suche in Google Scholar
Wasserscheid, P., & Welton, T. (Eds.) (2002). Ionic liquids in synthesis. Weinheim, Germany: Wiley.10.1002/3527600701Suche in Google Scholar
Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, 99, 2071-2084. DOI: 10.1021/cr980032t.10.1021/cr980032tSuche in Google Scholar
Zhang, Z. C. (2006). Catalysis in ionic liquids. Advances in Catalysis, 49, 153-237. DOI: 10.1016/s0360-0564(05)49003-3.10.1016/S0360-0564(05)49003-3Suche in Google Scholar
Zhao, D., Wu, M., Kou, Y., & Min, E. (2002). Ionic liquids: applications in catalysis. Catalysis Today, 74, 157-189. DOI: 10.1016/s0920-5861(01)00541-7. 10.1016/S0920-5861(01)00541-7Suche in Google Scholar
© Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Selective catalytic oxidation of ammonia into nitrogen and water vapour over transition metals modified Al2O3, TiO2 and ZrO2
- Carbonylation of cyclohexene to 2-cyclohexene-1-one by montmorillonite-supported Co(II) catalysts
- Ni-based olivine-type catalysts and their application in hydrogen production via auto-thermal reforming of acetic acid
- New bulk liquid membrane oscillator composed of two coupled oscillators with diffusion-mediated physical coupling
- Reaction kinetics of malachite in ammonium carbamate solution
- Bioleaching of hazardous waste
- Antioxidative properties of Sambacus nigra extracts
- Polymeric ionic liquids: a strategy for preparation of novel polymeric materials
- Effect of process parameters on the concentration, current efficiency and energy consumption of electro-generated silver(II)
- A facile, highly efficient and novel method for synthesis of 5-substituted 1H-tetrazoles catalysed by copper(I) chloride
- A new procedure for the synthesis of 2-[(4-dodecyloxyphenyl)sulfonyl]butanoic acid
- Formation of a vanillic Mannich base – theoretical study
- Computational insights into allosteric interaction between benzoazepin-2-ones and lung cancer-associated PDK1: Implications for activator design
- Molecular dynamic studies of amyloid-beta interactions with curcumin and Cu2+ ions
Artikel in diesem Heft
- Selective catalytic oxidation of ammonia into nitrogen and water vapour over transition metals modified Al2O3, TiO2 and ZrO2
- Carbonylation of cyclohexene to 2-cyclohexene-1-one by montmorillonite-supported Co(II) catalysts
- Ni-based olivine-type catalysts and their application in hydrogen production via auto-thermal reforming of acetic acid
- New bulk liquid membrane oscillator composed of two coupled oscillators with diffusion-mediated physical coupling
- Reaction kinetics of malachite in ammonium carbamate solution
- Bioleaching of hazardous waste
- Antioxidative properties of Sambacus nigra extracts
- Polymeric ionic liquids: a strategy for preparation of novel polymeric materials
- Effect of process parameters on the concentration, current efficiency and energy consumption of electro-generated silver(II)
- A facile, highly efficient and novel method for synthesis of 5-substituted 1H-tetrazoles catalysed by copper(I) chloride
- A new procedure for the synthesis of 2-[(4-dodecyloxyphenyl)sulfonyl]butanoic acid
- Formation of a vanillic Mannich base – theoretical study
- Computational insights into allosteric interaction between benzoazepin-2-ones and lung cancer-associated PDK1: Implications for activator design
- Molecular dynamic studies of amyloid-beta interactions with curcumin and Cu2+ ions