Abstract
A novel UV absorption material of squaric acid (SA) anion (C4O42- ) intercalated layered double hydroxides (LDHs) was successfully synthesized by the co-precipitation method. After intercalation, the interlayer distance of MgAl-SA-LDHs increased to 1.04 nm compared to those of MgAl-CO3- LDHs and SA anions present in form of a monolayer in the interlayer of LDHs. Thermal stability of SA clearly enhanced by the intercalation and the suppression of the deintercalation ability of MgAl-SA-LDHs was superior to that of 4-hydroxy-3-methoxybenzoic acid intercalated LDHs. The results of UV-DRS indicate the potential application of MgAl-SA-LDHs as UV absorbers.
References
Baglin, F. G., & Rose, C. B. (1970). The infrared and Raman spectra of crystalline squaric acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 26, 2293-2304. DOI: 10.1016/0584-8539(70)80181-7. 10.1016/0584-8539(70)80181-7Search in Google Scholar
bin Hussein, M. Z., & Long, C. W. (2004). Synthesis of organomineral nanohybrid material: indole-2-carboxylate in the lamella of Zn-Al-layered double hydroxide. Materials Chemistry and Physics, 85, 427-431. DOI: 10.1016/j.matchemphys. 2004.01.028.Search in Google Scholar
Bugatti, V., Gorrasi, G., Montanari, F., Nocchetti, M., Tammaro, L., & Vittoria, V. (2011). Modified layered double hydroxides in polycaprolactone as a tunable delivery system: in vitro release of antimicrobial benzoate derivatives. Applied Clay Science, 52, 34-40. DOI: 10.1016/j.clay.2011.01.025.10.1016/j.clay.2011.01.025Search in Google Scholar
Cao, T. C., Xu, K. L., Chen, G. M., & Guo, C. Y. (2013). Poly(ethylene terephthalate) nanocomposites with a strong UV-shielding function using UV-absorber intercalated layered double hydroxides. RSC Advances, 3, 6282-6285. DOI: 10.1039/c3ra23321a.10.1039/c3ra23321aSearch in Google Scholar
Cavani, F., Trifir`o, F., & Vaccari, A. (1991). Hydrotalcitetype anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173-301. DOI: 10.1016/0920-5861(91)80068-k.10.1016/0920-5861(91)80068-KSearch in Google Scholar
Chakraborti, M., Jackson, J. K., Plackett, D., Gilchrist, S. E., & Burt, H.M. (2012). The application of layered double hydroxide clay (LDH)-poly(lactide-co-glycolic acid) (PLGA) film composites for the controlled release of antibiotics. Journal of Materials Science: Materials in Medicine, 23, 1705-1713. DOI: 10.1007/s10856-012-4638-y.10.1007/s10856-012-4638-ySearch in Google Scholar PubMed
Cohen, S., Lacher, J. R., & Park, J. D. (1959). Diketocyclobutenediol. Journal of the American Chemical Society, 81, 3480-3480. DOI: 10.1021/ja01522a083.10.1021/ja01522a083Search in Google Scholar
Costantino, U., Bugatti, V., Gorrasi, G., Montanari, F., Nocchetti, M., Tammaro, L., & Vittoria, V. (2009). New polymeric composites based on poly(ε-caprolactone) and layered double hydroxides containing antimicrobial species. ACS Applied Materials & Interfaces, 1, 668-677. DOI: 10.1021/am8001988.10.1021/am8001988Search in Google Scholar PubMed
El-Toni, A. M., Yin, S., & Sato, T. (2004). Depression of deintercalation of 4-hydroxy-3-methoxybenzoic acid from Zn2Al layered double hydroxide by direct coating with silica. Materials Letters, 58, 3149-3152. DOI: 10.1016/j.matlet.2004.05.060.10.1016/j.matlet.2004.05.060Search in Google Scholar
Evans, D. G., & Slade, R. C. T. (2006). Structural aspects of layered double hydroxides. In X. Duan, & D. G. Evans (Eds.), Layered double hydroxides (pp. 1-87). Berlin, Germany: Springer. DOI: 10.1007/430 005.Search in Google Scholar
Feder, J. (1980). The structural phase transition and dielectric properties of squaric acid. In R. West (Ed.), Oxocarbons (pp. 141-167). New York, NY, USA: Academic Press.Search in Google Scholar
Feng, Y. J., Li, D. Q., Wang, Y., Evans, D. G., & Duan, X. (2006). Synthesis and characterization of a UV absorbentintercalated Zn-Al layered double hydroxide. Polymer Degradation and Stability, 91, 789-794. DOI: 10.1016/j. polymdegradstab.2005.06.006.Search in Google Scholar
Galejová, K., Obalová, L., Jirátová, K., Pacultová, K., & Kovanda, F. (2009). N2O catalytic decomposition - effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts. Chemical Papers, 63, 172-179. DOI: 10.2478/s11696-008-0105-0.10.2478/s11696-008-0105-0Search in Google Scholar
Georgopoulos, S. L., Edwards, H. G. M., & de Oliveria, L. F. C. (2013). Raman spectroscopic analysis of the interaction between squaric acid and dimethylsulfoxide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 111, 54-61. DOI: 10.1016/j.saa.2013.03.052.10.1016/j.saa.2013.03.052Search in Google Scholar PubMed
Gräf, K., Rahim, M. A., Das, S., & Thelakkat, M. (2013). Complementary co-sensitization of an aggregating squaraine dye in solid-state dye-sensitized solar cells. Dyes and Pigments, 99, 1101-1106. DOI: 10.1016/j.dyepig.2013.08.003.10.1016/j.dyepig.2013.08.003Search in Google Scholar
Hu, X., & Stebbins, C. E. (2005). Molecular docking and 3DQSAR studies of Yersinia protein tyrosine phosphatase YopH inhibitors. Bioorganic & Medicinal Chemistry, 13, 1101-1109. DOI: 10.1016/j.bmc.2004.11.026.10.1016/j.bmc.2004.11.026Search in Google Scholar
Hu, J. S., Ren, L. L., Guo, Y. G., Liang,H. P.,Cao, A.M.,Wan, L. J., & Bai, C. L. (2005). Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angewandte Chemie International Edition, 44, 1269-1273. DOI: 10.1002/anie.200462057.10.1002/anie.200462057Search in Google Scholar
Li, S. F., Shen, Y. M., Liu, D. B., Fan, L. H., & Wu, K. K. (2014a). Encapsulation of 2,4-dihydroxybenzophenone into dodecylbenzenesulfonate modified layered double hydroxide for UV absorption properties. Bulletin of the Korean Chemical Society, 35, 392-396. DOI: 10.5012/bkcs.2014.35.2.392.10.5012/bkcs.2014.35.2.392Search in Google Scholar
Li, S. F., Shen, Y. M., Xiao,M., Liu, D. B., Fa, L. H.,&Wu, K. K. (2014b). Intercalation of 2,4-dihydroxybenzophenone-5- sulfonate anion into Zn/Al layered double hydroxides for UV absorption properties. Journal of Industrial and Engineering Chemistry, 20, 1280-1284. DOI: 10.1016/j.jiec.2013.07.006.10.1016/j.jiec.2013.07.006Search in Google Scholar
Markova, L. I., Terpetsching, E. A., & Patsenker, L. D. (2013). Comparison of a series of hydrophilic squaraine and cyanine dyes for use as biological labels. Dyes and Pigments, 99, 561-570. DOI: 10.1016/j.dyepig.2013.06.022.10.1016/j.dyepig.2013.06.022Search in Google Scholar
Prevot, V., Forano, C., & Besse, J. P. (1998). Syntheses and thermal and chemical behaviors of tartrate and succinate intercalated Zn3Al and Zn2Cr layered double hydroxides. Inorganic Chemistry, 37, 4293-4301. DOI: 10.1021/ic9801239.10.1021/ic9801239Search in Google Scholar
Rives, V., & Ulibarri, M. A. (1999). Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coordination Chemistry Reviews, 181, 61-120. DOI: 10.1016/s0010-8545(98)00216-1.10.1016/S0010-8545(98)00216-1Search in Google Scholar
Rives, V. (Ed.) (2001). Layered double hydroxides: Present and future. New York, NY, USA: Nova Science Publisher.Search in Google Scholar
Rives, V., del Arco, M., & Martín, C. (2013). Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): A review. Journal of Controlled Release, 169, 28-39. DOI: 10.1016/j.jconrel.2013.03.034.10.1016/j.jconrel.2013.03.034Search in Google Scholar PubMed
Rives, V., del Arco, M., & Martín, C. (2014). Intercalation of drugs in layered double hydroxides and their controlled release: A review. Applied Clay Science, 88-89, 239-269. DOI: 10.1016/j.clay.2013.12.002.10.1016/j.clay.2013.12.002Search in Google Scholar
Schwartz, L. M., & Howard, L. O. (1973). π Electronic structure of aqueous squaric acid and its anions. The Journal of Physical Chemistry, 77, 314-318. DOI: 10.1021/j100622a003.10.1021/j100622a003Search in Google Scholar
Tammaro, L., Costantino, U., Nocchetti, M., & Vittoria, V. (2009). Incorporation of active nano-hybrids into poly(ε- caprolactone) for local controlled release: Antifibrinolytic drug. Applied Clay Science, 43, 350-356. DOI: 10.1016/j. clay.2008.10.005.Search in Google Scholar
Theiss, F. L., Ayoko, G. A., & Frost, R. L. (2013). Removal of boron species by layered double hydroxides: A review. Journal of Colloid and Interface Science, 402, 114-121. DOI: 10.1016/j.jcis.2013.03.051.10.1016/j.jcis.2013.03.051Search in Google Scholar PubMed
Tóth, V., Sipiczki, M., Bugris, V., Kukovecz, Á., Kónya, Z., Sipos, P., & Pálinkó, I. (2014). Carbon nanotube-layered double hydroxide nanocomposites. Chemical Papers, 68, 650-655. DOI: 10.2478/s11696-013-0499-1.10.2478/s11696-013-0499-1Search in Google Scholar
Trinidade Cursino, A. C., da Silva Lisboa, F., dos Santos Pyrrho, A., Pereira de Sousa, V., & Wypych, F. (2013). Layered double hydroxides intercalated with anionic surfactants benzophenone as potential materials for sunscreens. Journal of Colloid and Interface Science, 397, 88-95. DOI:10.1016/j.jcis.2013.01.059.10.1016/j.jcis.2013.01.059Search in Google Scholar PubMed
Yun, S. K., & Pinnavaia, T. J. (1995). Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chemistry of Materials, 7, 348-354. DOI: 10.1021/cm00050a017.10.1021/cm00050a017Search in Google Scholar
West, R., & Powell, D. L. (1963). New aromatic anions. III. Molecular orbital calculations on oxygenated anions. Journal of the American Chemical Society, 85, 2577-2579. DOI: 10.1021/ja00900a010.10.1021/ja00900a010Search in Google Scholar
Zümreoglu-Karan, B., & Ay, A. N. (2012). Layered double hydroxides - multifunctional nanomaterials. Chemical Papers, 66, 1-10. DOI: 10.2478/s11696-011-0100-8. 10.2478/s11696-011-0100-8Search in Google Scholar
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- One-step preparation of porous copper nanowires electrode for highly sensitive and stable amperometric detection of glyphosate
- Classification of wine distillates using multivariate statistical methods based on their direct GC-MS analysis
- Determination of cigarette papers moisture content by gas chromatography
- Flavonoids inhibiting glycation of bovine serum albumin: affinity–activity relationship
- Treatment of natural rubber latex serum waste by co-digestion with macroalgae, Chaetomorpha sp. and Ulva intestinalis, for sustainable production of biogas
- Physicochemical aspects of Trichosporon cutaneum CCY 30-5-10 adhesion and biofilm formation potential on cellophane
- Immobilisation of Aspergillus oryzae α-amylase and Aspergillus niger glucoamylase enzymes as cross-linked enzyme aggregates
- Dissolution kinetics of cerussite in an alternative leaching reagent for lead
- Preparation of quaternary pyridinium salts as possible proton conductors
- Stable UV absorption material synthesized by intercalation of squaric acid anion into layered double hydroxides
- Electrolytic preparation of nanosized Cu/Ni–Cu multilayered coatings
- Efficient solvent-free synthesis of bis(indolyl)methanes on SiO2 solid support under microwave irradiation
- Facile and direct synthesis of symmetrical acid anhydrides using a newly prepared powerful and efficient mixed reagent
- Practical synthesis of 2,3-dimethoxy-5-hydroxymethyl-6-methyl-1,4-benzoquinone
- Conversion of phenylacetonitrile in supercritical alcohols within a system containing small volume of water
Articles in the same Issue
- One-step preparation of porous copper nanowires electrode for highly sensitive and stable amperometric detection of glyphosate
- Classification of wine distillates using multivariate statistical methods based on their direct GC-MS analysis
- Determination of cigarette papers moisture content by gas chromatography
- Flavonoids inhibiting glycation of bovine serum albumin: affinity–activity relationship
- Treatment of natural rubber latex serum waste by co-digestion with macroalgae, Chaetomorpha sp. and Ulva intestinalis, for sustainable production of biogas
- Physicochemical aspects of Trichosporon cutaneum CCY 30-5-10 adhesion and biofilm formation potential on cellophane
- Immobilisation of Aspergillus oryzae α-amylase and Aspergillus niger glucoamylase enzymes as cross-linked enzyme aggregates
- Dissolution kinetics of cerussite in an alternative leaching reagent for lead
- Preparation of quaternary pyridinium salts as possible proton conductors
- Stable UV absorption material synthesized by intercalation of squaric acid anion into layered double hydroxides
- Electrolytic preparation of nanosized Cu/Ni–Cu multilayered coatings
- Efficient solvent-free synthesis of bis(indolyl)methanes on SiO2 solid support under microwave irradiation
- Facile and direct synthesis of symmetrical acid anhydrides using a newly prepared powerful and efficient mixed reagent
- Practical synthesis of 2,3-dimethoxy-5-hydroxymethyl-6-methyl-1,4-benzoquinone
- Conversion of phenylacetonitrile in supercritical alcohols within a system containing small volume of water