Home Stable UV absorption material synthesized by intercalation of squaric acid anion into layered double hydroxides
Article
Licensed
Unlicensed Requires Authentication

Stable UV absorption material synthesized by intercalation of squaric acid anion into layered double hydroxides

  • Shi-Feng Li EMAIL logo , Yan-Ming Shen , Min Xiao , Zhi-Gang Zhang and Wen-Xiu Li
Published/Copyright: December 30, 2014
Become an author with De Gruyter Brill

Abstract

A novel UV absorption material of squaric acid (SA) anion (C4O42- ) intercalated layered double hydroxides (LDHs) was successfully synthesized by the co-precipitation method. After intercalation, the interlayer distance of MgAl-SA-LDHs increased to 1.04 nm compared to those of MgAl-CO3- LDHs and SA anions present in form of a monolayer in the interlayer of LDHs. Thermal stability of SA clearly enhanced by the intercalation and the suppression of the deintercalation ability of MgAl-SA-LDHs was superior to that of 4-hydroxy-3-methoxybenzoic acid intercalated LDHs. The results of UV-DRS indicate the potential application of MgAl-SA-LDHs as UV absorbers.

References

Baglin, F. G., & Rose, C. B. (1970). The infrared and Raman spectra of crystalline squaric acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 26, 2293-2304. DOI: 10.1016/0584-8539(70)80181-7. 10.1016/0584-8539(70)80181-7Search in Google Scholar

bin Hussein, M. Z., & Long, C. W. (2004). Synthesis of organomineral nanohybrid material: indole-2-carboxylate in the lamella of Zn-Al-layered double hydroxide. Materials Chemistry and Physics, 85, 427-431. DOI: 10.1016/j.matchemphys. 2004.01.028.Search in Google Scholar

Bugatti, V., Gorrasi, G., Montanari, F., Nocchetti, M., Tammaro, L., & Vittoria, V. (2011). Modified layered double hydroxides in polycaprolactone as a tunable delivery system: in vitro release of antimicrobial benzoate derivatives. Applied Clay Science, 52, 34-40. DOI: 10.1016/j.clay.2011.01.025.10.1016/j.clay.2011.01.025Search in Google Scholar

Cao, T. C., Xu, K. L., Chen, G. M., & Guo, C. Y. (2013). Poly(ethylene terephthalate) nanocomposites with a strong UV-shielding function using UV-absorber intercalated layered double hydroxides. RSC Advances, 3, 6282-6285. DOI: 10.1039/c3ra23321a.10.1039/c3ra23321aSearch in Google Scholar

Cavani, F., Trifir`o, F., & Vaccari, A. (1991). Hydrotalcitetype anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173-301. DOI: 10.1016/0920-5861(91)80068-k.10.1016/0920-5861(91)80068-KSearch in Google Scholar

Chakraborti, M., Jackson, J. K., Plackett, D., Gilchrist, S. E., & Burt, H.M. (2012). The application of layered double hydroxide clay (LDH)-poly(lactide-co-glycolic acid) (PLGA) film composites for the controlled release of antibiotics. Journal of Materials Science: Materials in Medicine, 23, 1705-1713. DOI: 10.1007/s10856-012-4638-y.10.1007/s10856-012-4638-ySearch in Google Scholar PubMed

Cohen, S., Lacher, J. R., & Park, J. D. (1959). Diketocyclobutenediol. Journal of the American Chemical Society, 81, 3480-3480. DOI: 10.1021/ja01522a083.10.1021/ja01522a083Search in Google Scholar

Costantino, U., Bugatti, V., Gorrasi, G., Montanari, F., Nocchetti, M., Tammaro, L., & Vittoria, V. (2009). New polymeric composites based on poly(ε-caprolactone) and layered double hydroxides containing antimicrobial species. ACS Applied Materials & Interfaces, 1, 668-677. DOI: 10.1021/am8001988.10.1021/am8001988Search in Google Scholar PubMed

El-Toni, A. M., Yin, S., & Sato, T. (2004). Depression of deintercalation of 4-hydroxy-3-methoxybenzoic acid from Zn2Al layered double hydroxide by direct coating with silica. Materials Letters, 58, 3149-3152. DOI: 10.1016/j.matlet.2004.05.060.10.1016/j.matlet.2004.05.060Search in Google Scholar

Evans, D. G., & Slade, R. C. T. (2006). Structural aspects of layered double hydroxides. In X. Duan, & D. G. Evans (Eds.), Layered double hydroxides (pp. 1-87). Berlin, Germany: Springer. DOI: 10.1007/430 005.Search in Google Scholar

Feder, J. (1980). The structural phase transition and dielectric properties of squaric acid. In R. West (Ed.), Oxocarbons (pp. 141-167). New York, NY, USA: Academic Press.Search in Google Scholar

Feng, Y. J., Li, D. Q., Wang, Y., Evans, D. G., & Duan, X. (2006). Synthesis and characterization of a UV absorbentintercalated Zn-Al layered double hydroxide. Polymer Degradation and Stability, 91, 789-794. DOI: 10.1016/j. polymdegradstab.2005.06.006.Search in Google Scholar

Galejová, K., Obalová, L., Jirátová, K., Pacultová, K., & Kovanda, F. (2009). N2O catalytic decomposition - effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts. Chemical Papers, 63, 172-179. DOI: 10.2478/s11696-008-0105-0.10.2478/s11696-008-0105-0Search in Google Scholar

Georgopoulos, S. L., Edwards, H. G. M., & de Oliveria, L. F. C. (2013). Raman spectroscopic analysis of the interaction between squaric acid and dimethylsulfoxide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 111, 54-61. DOI: 10.1016/j.saa.2013.03.052.10.1016/j.saa.2013.03.052Search in Google Scholar PubMed

Gräf, K., Rahim, M. A., Das, S., & Thelakkat, M. (2013). Complementary co-sensitization of an aggregating squaraine dye in solid-state dye-sensitized solar cells. Dyes and Pigments, 99, 1101-1106. DOI: 10.1016/j.dyepig.2013.08.003.10.1016/j.dyepig.2013.08.003Search in Google Scholar

Hu, X., & Stebbins, C. E. (2005). Molecular docking and 3DQSAR studies of Yersinia protein tyrosine phosphatase YopH inhibitors. Bioorganic & Medicinal Chemistry, 13, 1101-1109. DOI: 10.1016/j.bmc.2004.11.026.10.1016/j.bmc.2004.11.026Search in Google Scholar

Hu, J. S., Ren, L. L., Guo, Y. G., Liang,H. P.,Cao, A.M.,Wan, L. J., & Bai, C. L. (2005). Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angewandte Chemie International Edition, 44, 1269-1273. DOI: 10.1002/anie.200462057.10.1002/anie.200462057Search in Google Scholar

Li, S. F., Shen, Y. M., Liu, D. B., Fan, L. H., & Wu, K. K. (2014a). Encapsulation of 2,4-dihydroxybenzophenone into dodecylbenzenesulfonate modified layered double hydroxide for UV absorption properties. Bulletin of the Korean Chemical Society, 35, 392-396. DOI: 10.5012/bkcs.2014.35.2.392.10.5012/bkcs.2014.35.2.392Search in Google Scholar

Li, S. F., Shen, Y. M., Xiao,M., Liu, D. B., Fa, L. H.,&Wu, K. K. (2014b). Intercalation of 2,4-dihydroxybenzophenone-5- sulfonate anion into Zn/Al layered double hydroxides for UV absorption properties. Journal of Industrial and Engineering Chemistry, 20, 1280-1284. DOI: 10.1016/j.jiec.2013.07.006.10.1016/j.jiec.2013.07.006Search in Google Scholar

Markova, L. I., Terpetsching, E. A., & Patsenker, L. D. (2013). Comparison of a series of hydrophilic squaraine and cyanine dyes for use as biological labels. Dyes and Pigments, 99, 561-570. DOI: 10.1016/j.dyepig.2013.06.022.10.1016/j.dyepig.2013.06.022Search in Google Scholar

Prevot, V., Forano, C., & Besse, J. P. (1998). Syntheses and thermal and chemical behaviors of tartrate and succinate intercalated Zn3Al and Zn2Cr layered double hydroxides. Inorganic Chemistry, 37, 4293-4301. DOI: 10.1021/ic9801239.10.1021/ic9801239Search in Google Scholar

Rives, V., & Ulibarri, M. A. (1999). Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coordination Chemistry Reviews, 181, 61-120. DOI: 10.1016/s0010-8545(98)00216-1.10.1016/S0010-8545(98)00216-1Search in Google Scholar

Rives, V. (Ed.) (2001). Layered double hydroxides: Present and future. New York, NY, USA: Nova Science Publisher.Search in Google Scholar

Rives, V., del Arco, M., & Martín, C. (2013). Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): A review. Journal of Controlled Release, 169, 28-39. DOI: 10.1016/j.jconrel.2013.03.034.10.1016/j.jconrel.2013.03.034Search in Google Scholar PubMed

Rives, V., del Arco, M., & Martín, C. (2014). Intercalation of drugs in layered double hydroxides and their controlled release: A review. Applied Clay Science, 88-89, 239-269. DOI: 10.1016/j.clay.2013.12.002.10.1016/j.clay.2013.12.002Search in Google Scholar

Schwartz, L. M., & Howard, L. O. (1973). π Electronic structure of aqueous squaric acid and its anions. The Journal of Physical Chemistry, 77, 314-318. DOI: 10.1021/j100622a003.10.1021/j100622a003Search in Google Scholar

Tammaro, L., Costantino, U., Nocchetti, M., & Vittoria, V. (2009). Incorporation of active nano-hybrids into poly(ε- caprolactone) for local controlled release: Antifibrinolytic drug. Applied Clay Science, 43, 350-356. DOI: 10.1016/j. clay.2008.10.005.Search in Google Scholar

Theiss, F. L., Ayoko, G. A., & Frost, R. L. (2013). Removal of boron species by layered double hydroxides: A review. Journal of Colloid and Interface Science, 402, 114-121. DOI: 10.1016/j.jcis.2013.03.051.10.1016/j.jcis.2013.03.051Search in Google Scholar PubMed

Tóth, V., Sipiczki, M., Bugris, V., Kukovecz, Á., Kónya, Z., Sipos, P., & Pálinkó, I. (2014). Carbon nanotube-layered double hydroxide nanocomposites. Chemical Papers, 68, 650-655. DOI: 10.2478/s11696-013-0499-1.10.2478/s11696-013-0499-1Search in Google Scholar

Trinidade Cursino, A. C., da Silva Lisboa, F., dos Santos Pyrrho, A., Pereira de Sousa, V., & Wypych, F. (2013). Layered double hydroxides intercalated with anionic surfactants benzophenone as potential materials for sunscreens. Journal of Colloid and Interface Science, 397, 88-95. DOI:10.1016/j.jcis.2013.01.059.10.1016/j.jcis.2013.01.059Search in Google Scholar PubMed

Yun, S. K., & Pinnavaia, T. J. (1995). Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chemistry of Materials, 7, 348-354. DOI: 10.1021/cm00050a017.10.1021/cm00050a017Search in Google Scholar

West, R., & Powell, D. L. (1963). New aromatic anions. III. Molecular orbital calculations on oxygenated anions. Journal of the American Chemical Society, 85, 2577-2579. DOI: 10.1021/ja00900a010.10.1021/ja00900a010Search in Google Scholar

Zümreoglu-Karan, B., & Ay, A. N. (2012). Layered double hydroxides - multifunctional nanomaterials. Chemical Papers, 66, 1-10. DOI: 10.2478/s11696-011-0100-8. 10.2478/s11696-011-0100-8Search in Google Scholar

Received: 2014-5-17
Revised: 2014-7-29
Accepted: 2014-8-5
Published Online: 2014-12-30
Published in Print: 2015-3-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. One-step preparation of porous copper nanowires electrode for highly sensitive and stable amperometric detection of glyphosate
  2. Classification of wine distillates using multivariate statistical methods based on their direct GC-MS analysis
  3. Determination of cigarette papers moisture content by gas chromatography
  4. Flavonoids inhibiting glycation of bovine serum albumin: affinity–activity relationship
  5. Treatment of natural rubber latex serum waste by co-digestion with macroalgae, Chaetomorpha sp. and Ulva intestinalis, for sustainable production of biogas
  6. Physicochemical aspects of Trichosporon cutaneum CCY 30-5-10 adhesion and biofilm formation potential on cellophane
  7. Immobilisation of Aspergillus oryzae α-amylase and Aspergillus niger glucoamylase enzymes as cross-linked enzyme aggregates
  8. Dissolution kinetics of cerussite in an alternative leaching reagent for lead
  9. Preparation of quaternary pyridinium salts as possible proton conductors
  10. Stable UV absorption material synthesized by intercalation of squaric acid anion into layered double hydroxides
  11. Electrolytic preparation of nanosized Cu/Ni–Cu multilayered coatings
  12. Efficient solvent-free synthesis of bis(indolyl)methanes on SiO2 solid support under microwave irradiation
  13. Facile and direct synthesis of symmetrical acid anhydrides using a newly prepared powerful and efficient mixed reagent
  14. Practical synthesis of 2,3-dimethoxy-5-hydroxymethyl-6-methyl-1,4-benzoquinone
  15. Conversion of phenylacetonitrile in supercritical alcohols within a system containing small volume of water
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0039/pdf
Scroll to top button