Startseite Medizin Validation study of the Helena V8 UltraCE capillary elecrophoresis analyser
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Validation study of the Helena V8 UltraCE capillary elecrophoresis analyser

  • Joris R. Delanghe ORCID logo EMAIL logo , Maaike Godefroid und Thomas Maenhout
Veröffentlicht/Copyright: 5. Januar 2026

Abstract

Objectives

Serum protein electrophoresis is one of the keystone investigations for screening for monoclonal proteins and assessing the serum protein profile. The newly released Helena V8ultra capillary electrophoresis system has been evaluated.

Methods

In total, 164 serum samples were assessed on the Helena V8 UltraCE system and compared with the Sebia Capillarys™ instrument. Abnormalities suggestive of monoclonal proteins were confirmed by immunosubtraction. Imprecision studies intervals were determined. Special attention was paid to complement C3 polymorphism.

Results

The imprecision of the Helena V8ultra was inferior or equal from 0.73 % (albumin) to 4.32 % (alpha2 globulin). The mean bias of Helena V8ultraCE vs. Sebia Capillarys was about −0.225 % for albumin; −0.791 % for alpha1 globulins; 1.353 % for alpha2 globulins; −2.317 % for beta globulins; 0.066 % for gamma globulins. Among the 6 samples with monoclonal proteins confirmed by immunofixation, all were seen on both methods, with only 1 discordant result. The theoretical plate number (albumin fraction) was 2,371 ± 718 (Helena V8UltraCE) vs. 445 ± 115 (Sebia Capillarys 2). The high resolution also allows to distinguish Complement C3 phenotypes. CV values for the various fractions were low, ranging from 0.47 % (albumin) to 0.89 % (gamma globulins). IgG, IgA and IgM M-proteins could be detected in the electropherogram with an excellent sensitivity (<0.1 g/L).

Conclusions

Our evaluation confirms the good analytical performance of the Helena V8 analyzer as a suitable alternative to the Sebia Capillarys instrument. The high resolution allows detailed analysis of individual protein fractions which is an excellent basis for studying microheterogeneity.


Corresponding author: Joris R. Delanghe, Labo Maenhout, Roger Van Steenbruggestraat 64/1, 8790 Waregem, Belgium, E-mail:

Acknowledgments

Yana Dewitte and Christa Desmet are thanked for skillful assistance.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: JD: carried out experiments, statistics, writing; MG: experimental work; TM: supervising, editing.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Data are available upon request.

References

1. Morrison, T, Booth, RA, Hauff, K, Berardi, P, Visram, A. Laboratory assessment of multiple myeloma. Adv Clin Chem 2019;89:1–58. https://doi.org/10.1016/bs.acc.2018.12.001.Suche in Google Scholar PubMed

2. Booth, RA, McCudden, CR, Balion, CM, Blasutig, IM, Bouhtiauy, I, Rodriguez-Capote, K, et al.. Candidate recommendations for protein electrophoresis reporting from the Canadian society of clinical chemists monoclonal gammopathy working group. Clin Biochem 2018;51:10–20. https://doi.org/10.1016/j.clinbiochem.2017.10.013.Suche in Google Scholar PubMed

3. Hage, DS. An overview of CE in clinical analysis. Methods Mol Biol 2019;1972:3–11. https://doi.org/10.1007/978-1-4939-9213-3_1.Suche in Google Scholar PubMed

4. De Witte, E, Speeckaert, MM, Van De Moortel, L, Lecocq, E, Delanghe, J. Human complement factor 3 polymorphism determination by capillary electrophoresis of serum. Electrophoresis 2012;33:440–4. https://doi.org/10.1002/elps.201100451.Suche in Google Scholar PubMed

5. Lippi, G, Battistelli, L, Vernocchi, A, Mussap, M. Analytical evaluation of the novel Helena V8 capillary electrophoresis system. J Med Biochem 2013;32:245–9. https://doi.org/10.2478/jomb-2013-0020.Suche in Google Scholar

6. Poisson, J, Fedoriw, Y, Henderson, MP, Hainsworth, S, Tucker, K, Uddin, Z, et al.. Performance evaluation of the Helena V8 capillary electrophoresis system. Clin Biochem 2012;45:697–9. https://doi.org/10.1016/j.clinbiochem.2012.03.018.Suche in Google Scholar PubMed

7. McCudden, CR, Mathews, SP, Hainsworth, SA, Chapman, JF, Hammett-Stabler, CA, Willis, MS, et al.. Performance comparison of capillary and agarose gel electrophoresis for the identification and characterization of monoclonal immunoglobulins. Am J Clin Pathol 2008;129:451–8. https://doi.org/10.1309/6KT8N49BRNVVVBT1.Suche in Google Scholar PubMed

8. Favresse, J, Yolande, L, Gras, J. Evaluation of a capillary electrophoresis system for the separation of proteins. J Appl Lab Med 2021;6:1611–7. https://doi.org/10.1093/jalm/jfab044.Suche in Google Scholar PubMed

9. Delanghe, J, Speeckaert, R, Speeckaert, M. Complement C3 and its polymorphism: biological and clinical consequences. Pathology 2014;46:1–10. https://doi.org/10.1097/pat.0000000000000042.Suche in Google Scholar PubMed

10. Vercauteren, KOA, Lambrecht, S, Delanghe, J. Pre-analytical classical and alternative complement pathway activity loss. Biochem Med 2019;29:030701, https://doi.org/10.11613/bm.2019.030701.Suche in Google Scholar

11. Zhang, J, Li, S, Hu, S, Yu, J, Xiang, Y. Association between genetic variation of complement C3 and the susceptibility to advanced age-related macular degeneration: a meta-analysis. BMC Ophthalmol 2018;18:274. https://doi.org/10.1186/s12886-018-0945-5.Suche in Google Scholar PubMed PubMed Central

12. Bossuyt, X. Separation of serum proteins by automated capillary zone electrophoresis. Clin Chem Lab Med 2003;41:762–72. https://doi.org/10.1515/cclm.2003.116.Suche in Google Scholar PubMed

13. Yang, Z, Harrison, K, Park, YA, Chaffin, CH, Thigpen, B, Easley, PL, et al.. Performance of the Sebia CAPILLARYS 2 for detection and immunotyping of serum monoclonal Am J Clin Pathol 2007;128:293–9. https://doi.org/10.1309/1L3CG8GK6F8VYNYH.Suche in Google Scholar PubMed

14. Carter, RHJ, Gupta, P, Tyler, C, Micklitsch, C, Arrode-Bruses, G, Snyder, J. Evaluation of the analytical performance of three major immunoglobulins assays on the atellica CI analyzer. Clin Chem 2024;70: hvae 106–697 https://doi.org/10.1093/clinchem/hvae106.697.Suche in Google Scholar

15. Delanghe, S, Moerman, A, Pletinck, A, Van, B, Schepers, E, Glorieux, G, et al.. Quantification of carbamylated albumin in serum based on capillary electrophoresis. Electrophoresis 2017;38:2135–40. https://doi.org/10.1002/elps.201700068.Suche in Google Scholar PubMed

16. Favresse, J, Delanghe, J. High-resolution capillary electrophoresis for the determination of carbamylated albumin. Clin Chem Lab Med 2021;60:229–34. https://doi.org/10.1515/cclm-2021-0926.Suche in Google Scholar PubMed

17. Chartier, C, Boularan, AM, Dupuy, AM, Badiou, S, Bargnoux, AS, Cognot, C, et al.. Evaluation of two automated capillary electrophoresis systems for human serum protein analysis. Clin Biochem 2011;44:1473–9. https://doi.org/10.1016/j.clinbiochem.2011.05.022.Suche in Google Scholar PubMed

18. Ricós, C, Alvarez, V, Cava, F, Garcia-Lano, Hernández, A, Jiménez, CV, et al.. Current databases on biological variation, pros, cons and progress. Scand J Clin Lab Invest;199:491–500. https://doi.org/10.1080/00365519950185229.Suche in Google Scholar PubMed

19. Bergón, E, Miranda, I, Miravalles, E. Linearity and detection limit in the measurement of serum M-protein with the capillary zone electrophoresis system capillarys. Clin Chem Lab Med 2005;43:721–3. https://doi.org/10.1515/CCLM.2005.122.Suche in Google Scholar PubMed

20. Jacobs, JFM, Turner, KA, Graziani, MS, Frinack, JL, Ettore, MW, Tate, JR, et al.. An international multi-center serum protein electrophoresis accuracy and M-protein isotyping study. Part II: limit of detection and follow-up of patients with small M-proteins. Clin Chem Lab Med 2020;58:547–59. https://doi.org/10.1515/cclm-2019-1105.Suche in Google Scholar PubMed

21. Seaux, L, Van Houcke, S, Dumoulin, E, Fiers, T, Lecocq, E, Delanghe, J. Dual wavelength recording, a simple algorithm to eliminate interferences due to UV absorbing substances in capillary electrophoresis. Electrophoresis 2014;35:2248–52. https://doi.org/10.1002/elps.201400259.Suche in Google Scholar PubMed

22. Bossuyt, X. Interferences in clinical capillary zone electrophoresis of serum proteins. Electrophoresis 2004;25:1485–7. https://doi.org/10.1002/elps.200305820.Suche in Google Scholar PubMed

23. Vermeersch, P, Mariën, G, Bossuyt, X. Pseudoparaproteinemia related to iomeprol administration after angiocardiography: detection in the beta fraction by capillary zone electrophoresis clin. Chem 2006;52:2312–3. https://doi.org/10.1373/clinchem.2006.078584.Suche in Google Scholar PubMed

24. Brouwers, A, Mariën, G, Bossuyt, X. Interference of sulfamethoxazole in capillarys electrophoresis. Clin Chem Lab Med 2006;44:910–1. https://doi.org/10.1515/cclm.2006.161.Suche in Google Scholar PubMed

25. Siede, D, Möller, H, Siede, WH, Regeniter, A. Effect of ampicillin-sulbactam on clinical capillary zone electrophoresis of serum proteins. Clin Chem Lab Med 2008;46:1468–9. https://doi.org/10.1515/cclm.2008.281.Suche in Google Scholar PubMed

Received: 2025-11-15
Accepted: 2025-12-28
Published Online: 2026-01-05

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/cclm-2025-1523/pdf
Button zum nach oben scrollen