Clinical relevance of clonal hematopoiesis and its interference in cell-free DNA profiling of patients with gastric cancer
-
Kwang Seob Lee
, Choong-Kun Lee
, Soon Sung Kwon
, Woo Sun Kwon
, Sejung Park
, Jong Rak Choi
, Sun Young Rha
and Saeam Shin
Abstract
Objectives
Clonal hematopoiesis (CH) is a condition in which healthy individuals have somatic mutations in hematopoietic stem cells. It has been reported with increased risk of hematologic malignancy and cardiovascular disease in the general population, but studies of Korean populations with comorbid disease entities are scarce.
Methods
White blood cells (WBCs) from patients with gastric cancer (GC) (n=121) were analyzed using a DNA-based targeted (531 genes) panel with customized pipeline designed to detect single nucleotide variants and small indels with low-allele-frequency of ≥0.2 %. We defined significant CH variants as having variant allele frequency (VAF) ≥2 % among variants found in WBCs. Matched cell-free DNA (cfDNA) samples were also analyzed with the same pipeline to investigate the false-positive results caused by WBC variants in cfDNA profiling.
Results
Significant CH variants were detected in 29.8 % of patients and were associated with age and male sex. The number of CH variants was associated with a history of anti-cancer therapy and age. DNMT3A and TET2 were recurrently mutated. Overall survival rate of treatment-naïve patients with stage IV GC was higher in those with CH, but Cox regression showed no significant association after adjustment for age, sex, anti-cancer therapy, and smoking history. In addition, we analyzed the potential interference of WBC variants in plasma cell-free DNA testing, which has attracted interest as a complementary method for tissue biopsy. Results showed that 37.0 % (47/127) of plasma specimens harbored at least one WBC variant. VAFs of interfering WBC variants in the plasma and WBC were correlated, and WBC variants with VAF ≥4 % in WBC were frequently detected in plasma with the same VAF.
Conclusions
This study revealed the clinical impact of CH in Korean patients and suggests the potential for its interference in cfDNA tests.
-
Research funding: This study was supported by a grant from the National R&D Program for Cancer Control, Ministry of Health and Welfare, Republic of Korea (to SYR, HA15C0005), a grant from the National Research Foundation of Korea (to SS, 2021R1I1A1A01045980) and supported by the MD-PhD/Medical Scientist Training Program through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (to KSL, no applicable grant number).
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. KSL, C-KL, SYR, S-TL, and JRC performed research, KSL performed data analysis, WSK and SP managed specimen collection, KSL and SS wrote the manuscript, SSK, SYR reviewed the manuscript, SYR and SS supervised the study.
-
Competing interests: Authors state no conflict of interest.
-
Informed consent: Informed consent was obtained from all individuals included in this study.
-
Ethical approval: This study was approved by the Institutional Review Board of Yonsei University, Severance Hospital (IRB No. 4-2022-0422). All research procedures conformed to the principles of the Helsinki Declaration.
-
Data availability: The datasets used and/or analyzed during the current study are available from the corresponding author (SS) on reasonable request.
References
1. Steensma, DP, Bejar, R, Jaiswal, S, Lindsley, RC, Sekeres, MA, Hasserjian, RP, et al.. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015;126:9–16. https://doi.org/10.1182/blood-2015-03-631747.Search in Google Scholar PubMed PubMed Central
2. Chan, HT, Chin, YM, Nakamura, Y, Low, SK. Clonal hematopoiesis in liquid biopsy: from biological noise to valuable clinical implications. Cancers (Basel) 2020;12:2227. https://doi.org/10.3390/cancers12082277.Search in Google Scholar PubMed PubMed Central
3. Xu, E, Su, K, Zhou, Y, Gong, L, Xuan, Y, Liao, M, et al.. Comprehensive landscape and interference of clonal haematopoiesis mutations for liquid biopsy: a Chinese pan-cancer cohort. J Cell Mol Med 2021;25:10279–90. https://doi.org/10.1111/jcmm.16966.Search in Google Scholar PubMed PubMed Central
4. Genovese, G, Kähler, AK, Handsaker, RE, Lindberg, J, Rose, SA, Bakhoum, SF, et al.. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014;371:2477–87. https://doi.org/10.1056/nejmoa1409405.Search in Google Scholar PubMed PubMed Central
5. Coombs, CC, Zehir, A, Devlin, SM, Kishtagari, A, Syed, A, Jonsson, P, et al.. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 2017;21:374–82.e4. https://doi.org/10.1016/j.stem.2017.07.010.Search in Google Scholar PubMed PubMed Central
6. Cheng, ML, Pectasides, E, Hanna, GJ, Parsons, HA, Choudhury, AD, Oxnard, GR. Circulating tumor DNA in advanced solid tumors: clinical relevance and future directions. CA Cancer J Clin 2021;71:176–90. https://doi.org/10.3322/caac.21650.Search in Google Scholar PubMed
7. Razavi, P, Li, BT, Brown, DN, Jung, B, Hubbell, E, Shen, R, et al.. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med 2019;25:1928–37. https://doi.org/10.1038/s41591-019-0652-7.Search in Google Scholar PubMed PubMed Central
8. Chan, HT, Nagayama, S, Chin, YM, Otaki, M, Hayashi, R, Kiyotani, K, et al.. Clinical significance of clonal hematopoiesis in the interpretation of blood liquid biopsy. Mol Oncol 2020;14:1719–30. https://doi.org/10.1002/1878-0261.12727.Search in Google Scholar PubMed PubMed Central
9. Dou, Y, Gold, HD, Luquette, LJ, Park, PJ. Detecting somatic mutations in normal cells. Trends Genet 2018;34:545–57. https://doi.org/10.1016/j.tig.2018.04.003.Search in Google Scholar PubMed PubMed Central
10. Bowman, RL, Busque, L, Levine, RL. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 2018;22:157–70. https://doi.org/10.1016/j.stem.2018.01.011.Search in Google Scholar PubMed PubMed Central
11. Yaung, SJ, Fuhlbrück, F, Peterson, M, Zou, W, Palma, JF, Patil, NS, et al.. Clonal hematopoiesis in late-stage non-small-cell lung cancer and its impact on targeted panel next-generation sequencing. JCO Precis Oncol 2020;4:1271–9. https://doi.org/10.1200/po.20.00046.Search in Google Scholar PubMed
12. Lam, VK, Zhang, J. Blood-based tumor mutation burden: continued progress toward personalizing immunotherapy in non-small cell lung cancer. J Thorac Dis 2019;11:2208–11. https://doi.org/10.21037/jtd.2019.05.68.Search in Google Scholar PubMed PubMed Central
13. Lee, KS, Seo, J, Lee, CK, Shin, S, Choi, Z, Min, S, et al.. Analytical and clinical validation of cell-free circulating tumor DNA assay for the estimation of tumor mutational burden. Clin Chem 2022;68:1519–28. https://doi.org/10.1093/clinchem/hvac146.Search in Google Scholar PubMed
14. Li, MM, Datto, M, Duncavage, EJ, Kulkarni, S, Lindeman, NI, Roy, S, et al.. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 2017;19:4–23. https://doi.org/10.1016/j.jmoldx.2016.10.002.Search in Google Scholar PubMed PubMed Central
15. Chakravarty, D, Gao, J, Phillips, SM, Kundra, R, Zhang, H, Wang, J, et al.. OncoKB: a precision oncology knowledge base. JCO Precis Oncol 2017;1:PO.17.00011. https://doi.org/10.1200/po.17.00011.Search in Google Scholar PubMed PubMed Central
16. Cerami, E, Gao, J, Dogrusoz, U, Gross, BE, Sumer, SO, Aksoy, BA, et al.. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012;2:401–4. https://doi.org/10.1158/2159-8290.cd-12-0095.Search in Google Scholar PubMed PubMed Central
17. Bacon, JVW, Annala, M, Soleimani, M, Lavoie, JM, So, A, Gleave, ME, et al.. Plasma circulating tumor DNA and clonal hematopoiesis in metastatic renal cell carcinoma. Clin Genitourin Cancer 2020;18:322–31.e2. https://doi.org/10.1016/j.clgc.2019.12.018.Search in Google Scholar PubMed
18. Leal, A, van Grieken, NCT, Palsgrove, DN, Phallen, J, Medina, JE, Hruban, C, et al.. White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer. Nat Commun 2020;11:525. https://doi.org/10.1038/s41467-020-14310-3.Search in Google Scholar PubMed PubMed Central
19. Liu, J, Chen, X, Wang, J, Zhou, S, Wang, CL, Ye, MZ, et al.. Biological background of the genomic variations of cf-DNA in healthy individuals. Ann Oncol 2019;30:464–70. https://doi.org/10.1093/annonc/mdy513.Search in Google Scholar PubMed
20. Tadokoro, Y, Hoshii, T, Yamazaki, S, Eto, K, Ema, H, Kobayashi, M, et al.. Spred1 safeguards hematopoietic homeostasis against diet-induced systemic stress. Cell Stem Cell 2018;22:713–25.e8. https://doi.org/10.1016/j.stem.2018.04.002.Search in Google Scholar PubMed
21. Edelmann, J, Holzmann, K, Miller, F, Winkler, D, Bühler, A, Zenz, T, et al.. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood 2012;120:4783–94. https://doi.org/10.1182/blood-2012-04-423517.Search in Google Scholar PubMed
22. Hsu, JI, Dayaram, T, Tovy, A, De Braekeleer, E, Jeong, M, Wang, F, et al.. PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 2018;23:700–13.e6. https://doi.org/10.1016/j.stem.2018.10.004.Search in Google Scholar PubMed PubMed Central
23. Weber-Lassalle, K, Ernst, C, Reuss, A, Möllenhoff, K, Baumann, K, Jackisch, C, et al.. Clonal hematopoiesis-associated gene mutations in a clinical cohort of 448 patients with ovarian cancer. J Natl Cancer Inst 2022;114:565–70. https://doi.org/10.1093/jnci/djab231.Search in Google Scholar PubMed PubMed Central
24. Bolton, KL, Ptashkin, RN, Gao, T, Braunstein, L, Devlin, SM, Kelly, D, et al.. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 2020;52:1219–26. https://doi.org/10.1038/s41588-020-00710-0.Search in Google Scholar PubMed PubMed Central
25. Jaiswal, S, Fontanillas, P, Flannick, J, Manning, A, Grauman, PV, Mar, BG, et al.. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014;371:2488–98. https://doi.org/10.1056/nejmoa1408617.Search in Google Scholar PubMed PubMed Central
26. Arends, CM, Dimitriou, S, Stahler, A, Hablesreiter, R, Strzelecka, PM, Stein, CM, et al.. Clonal hematopoiesis is associated with improved survival in patients with metastatic colorectal cancer from the FIRE-3 trial. Blood 2022;139:1593–7. https://doi.org/10.1182/blood.2021014108.Search in Google Scholar PubMed
27. Huang, F, Yang, Y, Chen, X, Jiang, H, Wang, H, Shen, M, et al.. Chemotherapy-associated clonal hematopoiesis mutations should be taken seriously in plasma cell-free DNA KRAS/NRAS/BRAF genotyping for metastatic colorectal cancer. Clin Biochem 2021;92:46–53. https://doi.org/10.1016/j.clinbiochem.2021.03.005.Search in Google Scholar PubMed
28. Jensen, K, Konnick, EQ, Schweizer, MT, Sokolova, AO, Grivas, P, Cheng, HH, et al.. Association of clonal hematopoiesis in DNA repair genes with prostate cancer plasma cell-free DNA testing interference. JAMA Oncol 2021;7:107–10. https://doi.org/10.1001/jamaoncol.2020.5161.Search in Google Scholar PubMed PubMed Central
29. Hu, Y, Ulrich, BC, Supplee, J, Kuang, Y, Lizotte, PH, Feeney, NB, et al.. False-positive plasma genotyping due to clonal hematopoiesis. Clin Cancer Res 2018;24:4437–43. https://doi.org/10.1158/1078-0432.ccr-18-0143.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/cclm-2023-0261).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Biological management of diabetes mellitus, the laboratory medicine specialist and the patient
- Reviews
- Remote HbA1c testing via microsampling: fit for purpose?
- The effect of hormonal contraceptive therapy on clinical laboratory parameters: a literature review
- Opinion Paper
- Continuous glucose monitoring has an increasing role in pre-symptomatic type 1 diabetes: advantages, limitations, and comparisons with laboratory-based testing
- IFCC Paper
- Comparison and commutability study among four faecal immunochemical tests (FIT) systems
- Guidelines and Recommendations
- Evidence-based procedures to improve the reliability of circulating miRNA biomarker assays
- General Clinical Chemistry and Laboratory Medicine
- Commutability assessment of candidate reference materials for plasma renin activity measurement: current challenges
- Aggregated data from the same laboratories participating in two glucose external quality assessment schemes show that commutability and transfers of values to control materials are decisive for the biases found
- Methodological considerations in determining sex steroids in children: comparison of conventional immunoassays with liquid chromatography-tandem mass spectrometry
- From “wet” matrices to “dry” blood spot sampling strategy: a versatile LC-MS/MS assay for simultaneous monitoring caffeine and its three primary metabolites in preterm infants
- A sensitive LC-MS/MS methotrexate assay capable of assessing adherence to methotrexate therapy in rheumatoid arthritis
- Determination of cortisone and cortisol in human scalp hair using an improved LC-MS/MS-based method
- Mild hypophosphatasia may be twice as prevalent as previously estimated: an effective clinical algorithm to detect undiagnosed cases
- Combined deficient response to polysaccharide-based and protein-based vaccines predicts a severe clinical phenotype
- Reference Values and Biological Variations
- A sex-specific association of leukocyte telomere length with thigh muscle mass
- Cancer Diagnostics
- Optimized procedure for high-throughput transcriptome profiling of small extracellular vesicles isolated from low volume serum samples
- Ultra-short cell-free DNA fragments enhance cancer early detection in a multi-analyte blood test combining mutation, protein and fragmentomics
- Clinical relevance of clonal hematopoiesis and its interference in cell-free DNA profiling of patients with gastric cancer
- Development and analytical validation of a novel nasopharynx swab-based Epstein-Barr virus C promoter methylation quantitative assay for nasopharyngeal carcinoma detection
- Infectious Diseases
- (Pre)analytical considerations concerning the analysis of synovial calprotectin
- Corrigendum
- Thermal and chronological stability of monocyte distribution width (MDW), the new biomarker for sepsis
- Acknowledgment
- Acknowledgment
- Letters to the Editor
- In-house diagnostic devices under the EU IVDR and unwanted side-effects of intentional transparency
- Use of thyroid function tests in urine: a position statement of the Belgian Thyroid Club
- State of the art of measurement uncertainty of serum ferritin
- Analytical performance evaluation and consumable waste reduction strategies using a tube-based quality control material
- Stability of fecal calprotectin extracts using the Diasorin® kit
- Reverse cascade testing from newborn screening: the opportunity to improve family healthcare outcomes
- An indirect data-mining approach to standardise paediatric serum phosphate reference intervals in Wales
- Sodium and risk assessment of osmotic demyelination syndrome: the method matters!
Articles in the same Issue
- Frontmatter
- Editorial
- Biological management of diabetes mellitus, the laboratory medicine specialist and the patient
- Reviews
- Remote HbA1c testing via microsampling: fit for purpose?
- The effect of hormonal contraceptive therapy on clinical laboratory parameters: a literature review
- Opinion Paper
- Continuous glucose monitoring has an increasing role in pre-symptomatic type 1 diabetes: advantages, limitations, and comparisons with laboratory-based testing
- IFCC Paper
- Comparison and commutability study among four faecal immunochemical tests (FIT) systems
- Guidelines and Recommendations
- Evidence-based procedures to improve the reliability of circulating miRNA biomarker assays
- General Clinical Chemistry and Laboratory Medicine
- Commutability assessment of candidate reference materials for plasma renin activity measurement: current challenges
- Aggregated data from the same laboratories participating in two glucose external quality assessment schemes show that commutability and transfers of values to control materials are decisive for the biases found
- Methodological considerations in determining sex steroids in children: comparison of conventional immunoassays with liquid chromatography-tandem mass spectrometry
- From “wet” matrices to “dry” blood spot sampling strategy: a versatile LC-MS/MS assay for simultaneous monitoring caffeine and its three primary metabolites in preterm infants
- A sensitive LC-MS/MS methotrexate assay capable of assessing adherence to methotrexate therapy in rheumatoid arthritis
- Determination of cortisone and cortisol in human scalp hair using an improved LC-MS/MS-based method
- Mild hypophosphatasia may be twice as prevalent as previously estimated: an effective clinical algorithm to detect undiagnosed cases
- Combined deficient response to polysaccharide-based and protein-based vaccines predicts a severe clinical phenotype
- Reference Values and Biological Variations
- A sex-specific association of leukocyte telomere length with thigh muscle mass
- Cancer Diagnostics
- Optimized procedure for high-throughput transcriptome profiling of small extracellular vesicles isolated from low volume serum samples
- Ultra-short cell-free DNA fragments enhance cancer early detection in a multi-analyte blood test combining mutation, protein and fragmentomics
- Clinical relevance of clonal hematopoiesis and its interference in cell-free DNA profiling of patients with gastric cancer
- Development and analytical validation of a novel nasopharynx swab-based Epstein-Barr virus C promoter methylation quantitative assay for nasopharyngeal carcinoma detection
- Infectious Diseases
- (Pre)analytical considerations concerning the analysis of synovial calprotectin
- Corrigendum
- Thermal and chronological stability of monocyte distribution width (MDW), the new biomarker for sepsis
- Acknowledgment
- Acknowledgment
- Letters to the Editor
- In-house diagnostic devices under the EU IVDR and unwanted side-effects of intentional transparency
- Use of thyroid function tests in urine: a position statement of the Belgian Thyroid Club
- State of the art of measurement uncertainty of serum ferritin
- Analytical performance evaluation and consumable waste reduction strategies using a tube-based quality control material
- Stability of fecal calprotectin extracts using the Diasorin® kit
- Reverse cascade testing from newborn screening: the opportunity to improve family healthcare outcomes
- An indirect data-mining approach to standardise paediatric serum phosphate reference intervals in Wales
- Sodium and risk assessment of osmotic demyelination syndrome: the method matters!