Home Evaluation of red blood cell parameters provided by the UF-5000 urine auto-analyzer in patients with glomerulonephritis
Article
Licensed
Unlicensed Requires Authentication

Evaluation of red blood cell parameters provided by the UF-5000 urine auto-analyzer in patients with glomerulonephritis

  • Genki Mizuno , Masato Hoshi ORCID logo EMAIL logo , Kentaro Nakamoto , Masayo Sakurai , Kazuko Nagashima , Takashi Fujita , Hiroyasu Ito and Tadayoshi Hata
Published/Copyright: April 28, 2021

Abstract

Objectives

The microscopic examination of hematuria, a cardinal symptom of glomerulonephritis (GN), is time-consuming and labor-intensive. As an alternative, the fully automated urine particle analyzer UF-5000 can interpret the morphological information of the glomerular red blood cells (RBCs) using parameters such as UF-5000 small RBCs (UF-%sRBCs) and Lysed-RBCs.

Methods

Hematuria samples from 203 patients were analyzed using the UF-5000 and blood and urine chemistries to determine the cut-off values of RBC parameters for GN and non-glomerulonephritis (NGN) classification and confirm their sensitivity to the IgA nephropathy and non-IgA nephropathy groups.

Results

The UF-%sRBCs and Lysed-RBCs values differed significantly between the GN and NGN groups. The cut-off value of UF-%sRBCs was >56.8% (area under the curve, 0.649; sensitivity, 94.1%; specificity, 38.1%; positive predictive value, 68.3%; and negative predictive value, 82.1%), while that for Lysed-RBC was >4.6/μL (area under the curve, 0.708; sensitivity, 82.4%; specificity, 56.0%; positive predictive value, 72.6%; and negative predictive value, 69.1%). Moreover, there was no significant difference in the sensitivity between the IgA nephropathy and non-IgA nephropathy groups (87.1 and 89.8% for UF-%sRBCs and 83.9 and 78.4% for Lysed-RBCs, respectively). In the NGN group, the cut-off values showed low sensitivity (56.0% for UF-%sRBCs and 44.0% for Lysed-RBCs).

Conclusions

The RBC parameters of the UF-5000, specifically UF-%sRBCs and Lysed-RBCs, showed good cut-off values for the diagnosis of GN.


Corresponding author: Masato Hoshi, PhD, Department of Biochemical and Analytical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192, Japan, Phone: +81 562 93 2532, Fax: +81 562 93 2519, E-mail:

Funding source: Fujita Health University Grant

Acknowledgments

We would like to thank Editage (www.editage.jp) for English language editing.

  1. Research funding: This study was supported by a Fujita Health University Grant (M. H.).

  2. Author contributions: Mizuno G and Hoshi M planned the study. Mizuno G, Hoshi M, Nakamoto K, Sakurai M, Nagashima K, and Fujita T performed the experiments. Mizuno G, Hoshi M, and Nakamoto K were responsible for the data integrity and analysis. Mizuno G, Hoshi M, Nakamoto K, Sakurai M, Nagashima K, Fujita T, Ito H, and Hata T discussed the results. Mizuno G, Hoshi M, and Nakamoto K wrote the manuscript. Hoshi M, Ito H, and Hata T conducted the study. Hata T assumes the primary responsibility for the final content. All authors reviewed the manuscript.

  3. Competing interests: The authors declare no potential conflicts of interest.

  4. Informed consent: Informed consent was obtained from patients through an opt-out form posted on the hospital wall.

  5. Ethical approval: Research involving human subjects complied with all relevant national regulations, institutional policies and is in accordance with the tenets of the Helsinki Declaration (as revised in 2013), and has been approved by the authors’ Institutional Review Board Ethics Review Committee of Fujita Health University or equivalent committee (approval no. HM19-182).

References

1. Horie, S, Ito, S, Okada, H, Kikuchi, H, Narita, I, Nishiyama, T, et al.. Japanese guidelines of the management of hematuria 2013. Clin Exp Nephrol 2014;18:679–89. https://doi.org/10.1007/s10157-014-1001-2.Search in Google Scholar

2. Fitzwater, DS, Wyatt, RJ. Hematuria. Pediatr Rev 1994;15:102–8. quiz 109. https://doi.org/10.1542/pir.15-3-102.Search in Google Scholar

3. Shichiri, M, Hosoda, K, Nishio, Y, Ogura, M, Suenaga, M, Saito, H, et al.. Red-cell-volume distribution curves in diagnosis of glomerular and non-glomerular haematuria. Lancet 1988;1:908–11. https://doi.org/10.1016/s0140-6736(88)91715-1.Search in Google Scholar

4. Shichiri, M, Oowada, A, Nishio, Y, Tomita, K, Shiigai, T. Use of autoanalyser to examine urinary-red-cell morphology in the diagnosis of glomerular haematuria. Lancet 1986;2:781–2. https://doi.org/10.1016/s0140-6736(86)90302-8.Search in Google Scholar

5. Kim, H, Kim, YO, Kim, Y, Suh, JS, Cho, EJ, Lee, HK. Small red blood cell fraction on the UF-1000i urine analyzer as a screening tool to detect dysmorphic red blood cells for diagnosing glomerulonephritis. Ann Lab Med 2019;39:271–7. https://doi.org/10.3343/alm.2019.39.3.277.Search in Google Scholar

6. Hamadah, AM, Gharaibeh, K, Mara, KC, Thompson, KA, Lieske, JC, Said, S, et al.. Urinalysis for the diagnosis of glomerulonephritis: role of dysmorphic red blood cells. Nephrol Dial Transpl 2018;33:1397–403. https://doi.org/10.1093/ndt/gfx274.Search in Google Scholar PubMed

7. Ahmad, G, Segasothy, M, Morad, Z. Urinary erythrocyte morphology as a diagnostic aid in haematuria. Singap Med J 1993;34:486–8.Search in Google Scholar

8. Ito, CA, Pecoits-Filho, R, Bail, L, Wosiack, MA, Afinovicz, D, Hauser, AB. Comparative analysis of two methodologies for the identification of urinary red blood cell casts. J Bras Nefrol 2011;33:402–7. https://doi.org/10.1590/s0101-28002011000400003.Search in Google Scholar

9. Chu-Su, Y, Shukuya, K, Yokoyama, T, Lin, WC, Chiang, CK, Lin, CW. Enhancing the detection of dysmorphic red blood cells and renal tubular epithelial cells with a modified urinalysis protocol. Sci Rep 2017;7:40521. https://doi.org/10.1038/srep40521.Search in Google Scholar PubMed PubMed Central

10. Nakayama, A, Tsuburai, H, Ebina, H, Kino, F. Outline and features of UF-5000, fully automated urine particle analyzer. Sysmex J Int 2018;28:21.Search in Google Scholar

11. De Rosa, R, Grosso, S, Lorenzi, G, Bruschetta, G, Camporese, A. Evaluation of the new Sysmex UF-5000 fluorescence flow cytometry analyser for ruling out bacterial urinary tract infection and for prediction of Gram negative bacteria in urine cultures. Clin Chim Acta 2018;484:171–8. https://doi.org/10.1016/j.cca.2018.05.047.Search in Google Scholar PubMed

12. Ippoliti, R, Allievi, I, Rocchetti, A. UF-5000 flow cytometer: a new technology to support microbiologists’ interpretation of suspected urinary tract infections. Microbiologyopen 2020;9:e987. https://doi.org/10.1002/mbo3.987.Search in Google Scholar PubMed PubMed Central

13. Ren, C, Wang, X, Yang, C, Li, S, Liu, S, Cao, H. Investigation of Atyp.C using UF-5000 flow cytometer in patients with a suspected diagnosis of urothelial carcinoma: a single-center study. Diagn Pathol 2020;15:77. https://doi.org/10.1186/s13000-020-00993-1.Search in Google Scholar

14. Enko, D, Stelzer, I, Bockl, M, Derler, B, Schnedl, WJ, Anderssohn, P, et al.. Comparison of the diagnostic performance of two automated urine sediment analyzers with manual phase-contrast microscopy. Clin Chem Lab Med 2020;58:268–73. https://doi.org/10.1515/cclm-2019-0919.Search in Google Scholar

15. Lewis, G, Maxwell, AP. Timely diagnosis and treatment essential in glomerulonephritis. Practitioner 2015;259:13–7.Search in Google Scholar

16. Haubitz, M, Wittke, S, Weissinger, EM, Walden, M, Rupprecht, HD, Floege, J, et al.. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int 2005;67:2313–20. https://doi.org/10.1111/j.1523-1755.2005.00335.x.Search in Google Scholar

17. Ohisa, N, Yoshida, K, Matsuki, R, Suzuki, H, Miura, H, Ohisa, Y, et al.. A comparison of urinary albumin-total protein ratio to phase-contrast microscopic examination of urine sediment for differentiating glomerular and nonglomerular bleeding. Am J Kidney Dis 2008;52:235–41. https://doi.org/10.1053/j.ajkd.2008.04.014.Search in Google Scholar

18. Japanese Association of Medical T. Editorial Committee of the Special Issue: Urinary S. Urinary sediment examination. Jpn J Med Technol 2017;66:51–85.Search in Google Scholar

19. Matsuo, S, Imai, E, Horio, M, Yasuda, Y, Tomita, K, Nitta, K, et al.. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009;53:982–92. https://doi.org/10.1053/j.ajkd.2008.12.034.Search in Google Scholar

20. Kageyama, Y, Shukuya, K, Tanaka, M, Hisasue, T, Hisasue, N, Morita, Y, et al.. Validation of morphological analysis of urinary red blood cells by an automated urinary flow cytometer. Jpn J Clin Lab Autom 2016;41:7.Search in Google Scholar

21. Pollock, C, Liu, PL, Gyory, AZ, Grigg, R, Gallery, ED, Caterson, R, et al.. Dysmorphism of urinary red blood cells – value in diagnosis. Kidney Int 1989;36:1045–9. https://doi.org/10.1038/ki.1989.299.Search in Google Scholar

22. Crop, MJ, de Rijke, YB, Verhagen, PC, Cransberg, K, Zietse, R. Diagnostic value of urinary dysmorphic erythrocytes in clinical practice. Nephron Clin Pract 2010;115:c203–12. https://doi.org/10.1159/000313037.Search in Google Scholar

23. Soares, MFS, Roberts, ISD. Histologic classification of IgA nephropathy: past, present, and future. Semin Nephrol 2018;38:477–84. https://doi.org/10.1016/j.semnephrol.2018.05.017.Search in Google Scholar

24. Goyal, VK. Changes with age in the human kidney. Exp Gerontol 1982;17:321–31. https://doi.org/10.1016/0531-5565(82)90032-8.Search in Google Scholar

25. Yu, GZ, Guo, L, Dong, JF, Shi, SF, Liu, LJ, Wang, JW, et al.. Persistent hematuria and kidney disease progression in IgA nephropathy: a cohort study. Am J Kidney Dis 2020;76:90–9. https://doi.org/10.1053/j.ajkd.2019.11.008.Search in Google Scholar PubMed

26. Martínez-Martínez, MU, Llamazares-Azuara, LM, Martínez-Galla, D, Mandeville, PB, Valadez-Castillo, F, Román-Acosta, S, et al.. Urinary sediment suggests lupus nephritis histology. Lupus 2017;26:580–7. https://doi.org/10.1177/0961203316669241.Search in Google Scholar PubMed

27. Kohler, H, Wandel, E, Brunck, B. Acanthocyturia – a characteristic marker for glomerular bleeding. Kidney Int 1991;40:115–20. https://doi.org/10.1038/ki.1991.188.Search in Google Scholar PubMed

28. Duan, ZY, Cai, GY, Li, JJ, Bu, R, Chen, XM. Urinary erythrocyte-derived miRNAs: emerging role in IgA nephropathy. Kidney Blood Press Res 2017;42:738–48. https://doi.org/10.1159/000481970.Search in Google Scholar PubMed

29. Dolci, A, Giavarina, D, Pasqualetti, S, Szoke, D, Panteghini, M. Total laboratory automation: do stat tests still matter? Clin Biochem 2017;50:605–11. https://doi.org/10.1016/j.clinbiochem.2017.04.002.Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/cclm-2021-0287).


Received: 2021-03-09
Accepted: 2021-04-20
Published Online: 2021-04-28
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. High-sensitivity assay for cardiac troponins with POCT methods. The future is soon
  4. Review
  5. The assessment of circulating cell-free DNA as a diagnostic tool for breast cancer: an updated systematic review and meta-analysis of quantitative and qualitative ssays
  6. Mini Review
  7. Which laboratory technique is used for the blood sodium analysis in clinical research? A systematic review
  8. Guidelines and Recommendations
  9. IFCC interim guidelines on rapid point-of-care antigen testing for SARS-CoV-2 detection in asymptomatic and symptomatic individuals
  10. General Clinical Chemistry and Laboratory Medicine
  11. Multicenter evaluation of use of dried blood spot compared to conventional plasma in measurements of globotriaosylsphingosine (LysoGb3) concentration in 104 Fabry patients
  12. S100B protein, cerebral ultrasound and magnetic resonance imaging patterns in brain injured preterm infants
  13. Urinary exosomal CD26 is associated with recovery from acute kidney injury in intensive care units: a prospective cohort study
  14. Evaluation of red blood cell parameters provided by the UF-5000 urine auto-analyzer in patients with glomerulonephritis
  15. Reference Values and Biological Variations
  16. Pediatric reference interval verification for common biochemical assays on the Abbott Alinity system
  17. Paediatric reference range for overnight urinary cortisol corrected for creatinine
  18. Cancer Diagnostics
  19. Circulating pro-gastrin releasing peptide (ProGRP) in patients with medullary thyroid carcinoma
  20. Cardiovascular Diseases
  21. Determination of sex-specific 99th percentile upper reference limits for a point of care high sensitivity cardiac troponin I assay
  22. Comparison of the analytical performance of the PATHFAST high sensitivity cardiac troponin I using fresh whole blood vs. fresh plasma samples
  23. Infectious Diseases
  24. Comprehensive assessment of humoral response after Pfizer BNT162b2 mRNA Covid-19 vaccination: a three-case series
  25. Analytical validation of an automated assay for the measurement of adenosine deaminase (ADA) and its isoenzymes in saliva and a pilot evaluation of their changes in patients with SARS-CoV-2 infection
  26. A new tool for sepsis screening in the Emergency Department
  27. Letters to the Editor
  28. Caveat emptor – hidden pitfalls in defining the 99th percentile of cardiac troponin assays
  29. Assay requirements for COVID-19 testing: serology vs. rapid antigen tests
  30. Stability of SARS-CoV-2 RNA in FTA card spot-prep samples derived from nasopharyngeal swabs
  31. Homocysteine (Hcy) assessment to predict outcomes of hospitalized Covid-19 patients: a multicenter study on 313 Covid-19 patients
  32. Concomitant immune thrombocytopenia and bone marrow hemophagocytosis in a patient with SARS-CoV-2
  33. Procalcitonin measurement by Diazyme™ immunturbidimetric and Elecsys BRAHMS™ PCT assay on a Roche COBAS modular analyzer
  34. Use of Neurosoft expert system improves turnaround time in a laboratory section specialized in protein diagnostics: a two-year experience
  35. Impact of different sampling and storage procedures on stability of acid/base parameters in venous blood samples
  36. Compound heterozygotes of Hb Constant Spring and Hb Stanleyville II in HbE/β0-thalassemia
  37. Congress Abstracts
  38. 60th National Congress of the Hungarian Society of Laboratory Medicine
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cclm-2021-0287/html
Scroll to top button