Home Circulating platelet-neutrophil aggregates as risk factor for deep venous thrombosis
Article
Licensed
Unlicensed Requires Authentication

Circulating platelet-neutrophil aggregates as risk factor for deep venous thrombosis

  • Jingyi Zhou , Erwen Xu , Kang Shao , Wenyan Shen , Yi Gu , Min Li and Wei Shen EMAIL logo
Published/Copyright: November 24, 2018

Abstract

Background

Platelet-neutrophil aggregates (PNAs) are fundamental mechanisms linking hemostasis and inflammatory processes. Elevated level of PNAs have been reported in inflammatory diseases and coronary artery diseases. However, studies on the correlation between PNAs formation and deep venous thrombosis (DVT) are not available.

Methods

A total of 92 participants were involved in this study, including 32 cases with DVT and 60 cases without DVT. Blood samples coagulated by K2-EDTA or sodium citrate were prepared for blood cell count and blood smears. PNAs and platelet activation were measured using flow cytometry. The correlation between platelet activation level and PNAs level was analyzed by linear regression. Receiver operating characteristic (ROC) analysis was performed, assessing the prognostic performance of PNAs to predict potential risk of DVT occurrence.

Results

PNAs was found in the blood smears of patients with DVT. Significant increased level of PNAs was identified in DVT group (medium 8.43%, interquartile range [IQR] 4.11%–15.69%), compared with that in control group (5.16%, IQR 2.40–9.60, p<0.01). The DVT group also showed a dramatic elevated level of total platelet activation (medium 16.06%, IQR 6.04–22.05) vs. control group (11.26%, IQR 5.54–19.99, p<0.05). The PNAs level was correlated with total platelet activation (r2=0.58, p<0.0001). A significantly high odds ratio (OR) of DVT occurrence was identified when the level of PNAs was higher than 7.4% (OR 3.60, 95% confidence interval [CI] 1.463–8.838, p<0.01).

Conclusions

An elevated level of PNAs was associated with risk of DVT occurrence, which might be a suitable marker predicting DVT development.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by National Natural Science Foundation of China Youth Project (Funder Id: 10.13039/501100001809, 81601822 and 81702069).

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Fowkes FJ, Price JF, Fowkes FG. Incidence of diagnosed deep vein thrombosis in the general population: systematic review. Eur J Vasc Endovasc Surg 2003;25:1–5.10.1053/ejvs.2002.1778Search in Google Scholar PubMed

2. Naess IA, Christiansen SC, Romundstad P, Cannegieter SC, Rosendaal FR, Hammerstrom J. Incidence and mortality of venous thrombosis: a population-based study. J Thromb Haemost 2007;5:692–9.10.1111/j.1538-7836.2007.02450.xSearch in Google Scholar PubMed

3. Schulz C, Engelmann B, Massberg S. Crossroads of coagulation and innate immunity: the case of deep vein thrombosis. J Thromb Haemost 2013;11(Suppl 1):233–41.10.1111/jth.12261Search in Google Scholar PubMed

4. Reitsma PH, Versteeg HH, Middeldorp S. Mechanistic view of risk factors for venous thromboembolism. Arterioscler Thromb Vasc Biol 2012;32:563–8.10.1161/ATVBAHA.111.242818Search in Google Scholar PubMed

5. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr., et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 2010;107:15880–5.10.1073/pnas.1005743107Search in Google Scholar PubMed PubMed Central

6. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010;16:887–96.10.1038/nm.2184Search in Google Scholar PubMed

7. von Bruhl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012;209:819–35.10.1084/jem.20112322Search in Google Scholar PubMed PubMed Central

8. van Montfoort ML, Stephan F, Lauw MN, Hutten BA, Van Mierlo GJ, Solati S, et al. Circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombosis. Arterioscler Thromb Vasc Biol 2013;33:147–51.10.1161/ATVBAHA.112.300498Search in Google Scholar PubMed

9. Theoret JF, Bienvenu JG, Kumar A, Merhi Y. P-selectin antagonism with recombinant p-selectin glycoprotein ligand-1 (rPSGL-Ig) inhibits circulating activated platelet binding to neutrophils induced by damaged arterial surfaces. J Pharmacol Exp Ther 2001;298:658–64.Search in Google Scholar

10. Kornerup KN, Salmon GP, Pitchford SC, Liu WL, Page CP. Circulating platelet-neutrophil complexes are important for subsequent neutrophil activation and migration. J Appl Physiol (1985) 2010;109:758–67.10.1152/japplphysiol.01086.2009Search in Google Scholar PubMed

11. Page C, Pitchford S. Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. Int Immunopharmacol 2013;17:1176–84.10.1016/j.intimp.2013.06.004Search in Google Scholar PubMed

12. Tamagawa-Mineoka R, Katoh N, Ueda E, Takenaka H, Kita M, Kishimoto S. The role of platelets in leukocyte recruitment in chronic contact hypersensitivity induced by repeated elicitation. Am J Pathol 2007;170:2019–29.10.2353/ajpath.2007.060881Search in Google Scholar PubMed PubMed Central

13. Asaduzzaman M, Lavasani S, Rahman M, Zhang S, Braun OO, Jeppsson B, et al. Platelets support pulmonary recruitment of neutrophils in abdominal sepsis. Crit Care Med 2009;37:1389–96.10.1097/CCM.0b013e31819ceb71Search in Google Scholar PubMed

14. Koupenova M, Vitseva O, MacKay CR, Beaulieu LM, Benjamin EJ, Mick E, et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 2014;124:791–802.10.1182/blood-2013-11-536003Search in Google Scholar PubMed PubMed Central

15. Vowinkel T, Wood KC, Stokes KY, Russell J, Tailor A, Anthoni C, et al. Mechanisms of platelet and leukocyte recruitment in experimental colitis. Am J Physiol Gastrointest Liver Physiol 2007;293:G1054–60.10.1152/ajpgi.00350.2007Search in Google Scholar PubMed

16. Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003;9:61–7.10.1038/nm810Search in Google Scholar PubMed

17. Lefer AM, Campbell B, Scalia R, Lefer DJ. Synergism between platelets and neutrophils in provoking cardiac dysfunction after ischemia and reperfusion: role of selectins. Circulation 1998;98:1322–8.10.1161/01.CIR.98.13.1322Search in Google Scholar

18. Kohler D, Straub A, Weissmuller T, Faigle M, Bender S, Lehmann R, et al. Phosphorylation of vasodilator-stimulated phosphoprotein prevents platelet-neutrophil complex formation and dampens myocardial ischemia-reperfusion injury. Circulation 2011;123:2579–90.10.1161/CIRCULATIONAHA.110.014555Search in Google Scholar PubMed

19. Maugeri N, Rovere-Querini P, Evangelista V, Godino C, Demetrio M, Baldini M, et al. An intense and short-lasting burst of neutrophil activation differentiates early acute myocardial infarction from systemic inflammatory syndromes. PLoS One 2012;7:e39484.10.1371/journal.pone.0039484Search in Google Scholar PubMed PubMed Central

20. Naruko T, Ueda M, Haze K, van der Wal AC, van der Loos CM, Itoh A, et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 2002;106:2894–900.10.1161/01.CIR.0000042674.89762.20Search in Google Scholar PubMed

21. Hayden MR, Tyagi SC. Is type 2 diabetes mellitus a vascular disease (atheroscleropathy) with hyperglycemia a late manifestation? The role of NOS, NO, and redox stress. Cardiovasc Diabetol 2003;2:2.10.1186/1475-2840-2-2Search in Google Scholar PubMed PubMed Central

22. Peters MJ, Dixon G, Kotowicz KT, Hatch DJ, Heyderman RS, Klein NJ. Circulating platelet-neutrophil complexes represent a subpopulation of activated neutrophils primed for adhesion, phagocytosis and intracellular killing. Br J Haematol 1999;106:391–9.10.1046/j.1365-2141.1999.01553.xSearch in Google Scholar PubMed

23. Ueno K, Nomura Y, Morita Y, Eguchi T, Masuda K, Kawano Y. Circulating platelet-neutrophil aggregates play a significant role in Kawasaki disease. Circ J 2015;79:1349–56.10.1253/circj.CJ-14-1323Search in Google Scholar PubMed

24. Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest 2006;116:3211–9.10.1172/JCI29499Search in Google Scholar PubMed PubMed Central

25. Pamuk GE, Vural O, Turgut B, Demir M, Umit H, Tezel A. Increased circulating platelet-neutrophil, platelet-monocyte complexes, and platelet activation in patients with ulcerative colitis: a comparative study. Am J Hematol 2006;81:753–9.10.1002/ajh.20655Search in Google Scholar PubMed

26. Ren F, Mu N, Zhang X, Tan J, Li L, Zhang C, et al. Increased platelet-leukocyte aggregates are associated with myocardial no-reflow in patients with ST elevation myocardial infarction. Am J Med Sci 2016;352:261–6.10.1016/j.amjms.2016.05.034Search in Google Scholar PubMed

27. Brill A, Fuchs TA, Chauhan AK, Yang JJ, De Meyer SF, Kollnberger M, et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 2011;117:1400–7.10.1182/blood-2010-05-287623Search in Google Scholar PubMed PubMed Central

28. Connolly GC, Khorana AA, Kuderer NM, Culakova E, Francis CW, Lyman GH. Leukocytosis, thrombosis and early mortality in cancer patients initiating chemotherapy. Thromb Res 2010;126:113–8.10.1016/j.thromres.2010.05.012Search in Google Scholar PubMed PubMed Central

29. Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012;10:136–44.10.1111/j.1538-7836.2011.04544.xSearch in Google Scholar PubMed PubMed Central

30. Gupta AK, Joshi MB, Philippova M, Erne P, Hasler P, Hahn S, et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 2010;584:3193–7.10.1016/j.febslet.2010.06.006Search in Google Scholar PubMed

31. Nkambule BB, Davison G, Ipp H. Platelet leukocyte aggregates and markers of platelet aggregation, immune activation and disease progression in HIV infected treatment naive asymptomatic individuals. J Thromb Thrombolysis 2015;40:458–67.10.1007/s11239-015-1212-8Search in Google Scholar PubMed

32. Mauler M, Seyfert J, Haenel D, Seeba H, Guenther J, Stallmann D, et al. Platelet-neutrophil complex formation-a detailed in vitro analysis of murine and human blood samples. J Leukoc Biol 2016;99:781–9.10.1189/jlb.3TA0315-082RSearch in Google Scholar PubMed

Received: 2018-08-22
Accepted: 2018-10-28
Published Online: 2018-11-24
Published in Print: 2019-04-24

©2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Cardiac biomarkers – 2019
  4. Reviews
  5. Current understanding and future directions in the application of TIMP-2 and IGFBP7 in AKI clinical practice
  6. Serum cytokines, adipokines and ferritin for non-invasive assessment of liver fibrosis in chronic liver disease: a systematic review
  7. Opinion Papers
  8. Detection capability of quantitative faecal immunochemical tests for haemoglobin (FIT) and reporting of low faecal haemoglobin concentrations
  9. Should phosphatidylethanol be currently analysed using whole blood, dried blood spots or both?
  10. IFCC Papers
  11. High sensitivity, contemporary and point-of-care cardiac troponin assays: educational aids developed by the IFCC Committee on Clinical Application of Cardiac Bio-Markers
  12. Cardiac troponin and natriuretic peptide analytical interferences from hemolysis and biotin: educational aids from the IFCC Committee on Cardiac Biomarkers (IFCC C-CB)
  13. Genetics and Molecular Diagnostics
  14. Droplet digital PCR for the simultaneous analysis of minimal residual disease and hematopoietic chimerism after allogeneic cell transplantation
  15. General Clinical Chemistry and Laboratory Medicine
  16. Commutable whole blood reference materials for hemoglobin A1c validated on multiple clinical analyzers
  17. When results matter: reliable creatinine concentrations in hyperbilirubinemia patients
  18. Mass spectrometry based analytical quality assessment of serum and plasma specimens with patterns of endo- and exogenous peptides
  19. Association of serum sphingomyelin profile with clinical outcomes in patients with lower respiratory tract infections: results of an observational, prospective 6-year follow-up study
  20. Effect of an activated charcoal product (DOAC Stop™) intended for extracting DOACs on various other APTT-prolonging anticoagulants
  21. Hematology and Coagulation
  22. Commutability assessment of reference materials for the enumeration of lymphocyte subsets
  23. Circulating platelet-neutrophil aggregates as risk factor for deep venous thrombosis
  24. Reference Values and Biological Variations
  25. A comparison of complete blood count reference intervals in healthy elderly vs. younger Korean adults: a large population study
  26. Indirect determination of hematology reference intervals in adult patients on Beckman Coulter UniCell DxH 800 and Abbott CELL-DYN Sapphire devices
  27. Cancer Diagnostics
  28. Large platelet size is associated with poor outcome in patients with metastatic pancreatic cancer
  29. Cardiovascular Diseases
  30. Sample matrix and high-sensitivity cardiac troponin I assays
  31. Preoperative proteinuria and clinical outcomes in type B aortic dissection after thoracic endovascular aortic repair
  32. Infectious Diseases
  33. The rational specimen for the quantitative detection of Epstein-Barr virus DNA load
  34. Letters to the Editor
  35. Letter to the Editor on article Dimech W, Karakaltsas M, Vincini G. Comparison of four methods of establishing control limits for monitoring quality controls in infectious disease serology testing. Clin Chem Lab Med 2018;56:1970–8
  36. Counterpoint to the Letter to the Editor by Badrick and Parvin in regard to Comparison of four methods of establishing control limits for monitoring quality controls in infectious disease serology testing
  37. Is creatine kinase an ideal biomarker in rhabdomyolysis? Reply to Lippi et al.: Diagnostic biomarkers of muscle injury and exertional rhabdomyolysis (https://doi.org/10.1515/cclm-2018-0656)
  38. Blood neuron cell-derived microparticles as potential biomarkers in Alzheimer’s disease
  39. A fast, nondestructive, low-cost method for the determination of hematocrit of dried blood spots using image analysis
  40. Association of fibroblast growth factor 21 plasma levels with neonatal sepsis: preliminary results
  41. Impact of continuous renal replacement therapy (CRRT) and other extracorporeal support techniques on procalcitonin guided antibiotic therapy in critically ill patients with septic shock
  42. Determining the cutoff value of the APTT mixing test for factor VIII inhibitor
  43. Determining the cut-off value of the APTT mixing test for factor VIII inhibitor: reply
  44. Euthyroid Graves’ disease with spurious hyperthyroidism: a diagnostic challenge
  45. A pilot plasma-ctDNA ring trial for the Cobas® EGFR Mutation Test in clinical diagnostic laboratories
  46. MS-based proteomics: a metrological sound and robust alternative for apolipoprotein E phenotyping in a multiplexed test
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cclm-2018-0909/html
Scroll to top button