Home Assessing matrix, interferences and comparability between the Abbott Diagnostics and the Beckman Coulter high-sensitivity cardiac troponin I assays
Article
Licensed
Unlicensed Requires Authentication

Assessing matrix, interferences and comparability between the Abbott Diagnostics and the Beckman Coulter high-sensitivity cardiac troponin I assays

  • Peter A. Kavsak EMAIL logo , Paul Malinowski , Chantele Roy , Lorna Clark and Shana Lamers
Published/Copyright: March 13, 2018

Abstract

Background:

Analytical evaluation of high-sensitivity cardiac troponin (hs-cTn) assays, with particular attention to imprecision, interferences and matrix effects, at normal cTn concentrations, is of utmost importance as many different clinical algorithms use concentration cutoffs <10 ng/L for decision-making. The objective for the present analytical study was to compare the new Beckman Coulter hs-cTnI assay (Access hsTnI) to Abbott’s hs-cTnI assay in different matrices and for different interferences, with a focus on concentrations <10 ng/L.

Methods:

The limit of blank (LoB) and the limit of detection (LoD) were determined in different matrices for the Beckman hs-cTnI assay. Passing-Bablok regression and difference plots were determined for 200 matched lithium heparin and EDTA plasma samples for the Beckman assay and 200 lithium heparin samples for the Abbott assay. Both EDTA and heparin plasma samples were also evaluated for stability under refrigerated conditions, for endogenous alkaline phosphatase interference and for hemolysis and icterus.

Results:

The Beckman hs-cTnI assay LoB was 0.5 ng/L with the following range of LoDs=0.8–1.2 ng/L, with EDTA plasma yielding lower concentrations as compared to lithium heparin plasma (mean difference=−14.9%; 95% CI=−16.9 to 12.9). Below 10 ng/L, lithium heparin cTnI results from the Beckman assay were on average 1.1 ng/L (95% CI=0.7 to 1.5) higher than the Abbott results, with no difference between the methods when using EDTA plasma (mean difference =−0.1 ng/L; 95% CI=−0.3 to 0.2). Low cTnI concentrations were less effected by interferences in EDTA plasma.

Conclusions:

The Access hsTnI method can reliably detect normal cTnI concentrations with both lithium heparin and EDTA plasma being suitable matrices.


Corresponding author: Dr. Peter A. Kavsak, McMaster University, Juravinski Hospital and Cancer Centre, 711 Concession Street Hamilton, L8V 1C3 ON, Canada; and Core Laboratory, Hamilton Health Sciences, Hamilton, ON, Canada, Phone: 905-521-2100

Acknowledgments

Beckman Coulter for the supplies and funding to perform this study.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Dr. Kavsak has received grants/reagents/consultant/advisor/honoria from Abbott Laboratories, Abbott Point of Care, Abbott Diagnostics Division Canada, Beckman Coulter, Ortho Clinical Diagnostics, Randox Laboratories, Roche Diagnostics and Siemens Healthcare Diagnostics. McMaster University has filed patents with Dr. Kavsak listed as an inventor in the acute cardiovascular biomarker field. This analytical study was funded by Beckman Coulter.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Kavsak PA, MacRae AR, Yerna MJ, Jaffe AS. Analytic and clinical utility of a next-generation, highly sensitive cardiac troponin I assay for early detection of myocardial injury. Clin Chem 2009;55:573–7.10.1373/clinchem.2008.116020Search in Google Scholar PubMed

2. Kavsak PA, Wang X, Ko DT, MacRae AR, Jaffe AS. Short- and long-term risk stratification using a next-generation, high-sensitivity research cardiac troponin I (hs-cTnI) assay in an emergency department chest pain population. Clin Chem 2009;55:1809–15.10.1373/clinchem.2009.127241Search in Google Scholar PubMed PubMed Central

3. Kavsak PA, Xu L, Yusuf S, McQueen MJ. High-sensitivity cardiac troponin I measurement for risk stratification in a stable high-risk population. Clin Chem 2011;57:1146–53.10.1373/clinchem.2011.164574Search in Google Scholar PubMed

4. Kavsak PA, Hill SA, Bhanich Supapol W, Devereaux PJ, Worster A. Biomarkers for predicting serious cardiac outcomes at 72 hours in patients presenting early after chest pain onset with symptoms of acute coronary syndromes. Clin Chem 2012;58:298–302.10.1373/clinchem.2011.172064Search in Google Scholar PubMed

5. Lippi G, Ferrari A, Gandini G, Gelati M, Lo Cascio C, Salvagno GL. Analytical evaluation of the new Beckman Coulter Access high sensitivity cardiac troponin I immunoassay. Clin Chem Lab Med 2017;56:157–61.10.1515/cclm-2017-0350Search in Google Scholar PubMed

6. Masotti S, Prontera C, Musetti V, Storti S, Ndreu R, Zucchelli GC, et al. Evaluation of analytical performance of a new high-sensitivity immunoassay for cardiac troponin I. Clin Chem Lab Med 2018;56:492–501.10.1515/cclm-2017-0387Search in Google Scholar PubMed

7. Kavsak PA, Jaffe AS, Greene DN, Christenson RH, Apple FS, Wu AH. Total analytic error for low cardiac troponin concentrations (≤10 ng/L) by use of a high-sensitivity cardiac troponin assay. Clin Chem 2017;63:1043–5.10.1373/clinchem.2017.271361Search in Google Scholar PubMed

8. Boeddinghaus J, Nestelberger T, Twerenbold R, Wildi K, Badertscher P, Cupa J, et al. Direct comparison of 4 very early rule-out strategies for acute myocardial infarction using high-sensitivity cardiac troponin I. Circulation 2017;135:1597–611.10.1161/CIRCULATIONAHA.116.025661Search in Google Scholar PubMed

9. Chapman AR, Anand A, Boeddinghaus J, Ferry AV, Sandeman D, Adamson PD, et al. Comparison of the efficacy and safety of early rule-out pathways for acute myocardial infarction. Circulation 2017;135:1586–96.10.1161/CIRCULATIONAHA.116.025021Search in Google Scholar PubMed PubMed Central

10. Kavsak PA, Shortt C, Ma J, Clayton N, Sherbino J, Hill SA, et al. A laboratory score at presentation to rule-out serious cardiac outcomes or death in patients presenting with symptoms suggestive of acute coronary syndrome. Clin Chim Acta 2017;469:69–74.10.1016/j.cca.2017.03.021Search in Google Scholar PubMed

11. Kavsak P, Roy C, Malinowski P, Mark CT, Scott T, Clark L, et al. Macrocomplexes and discordant high-sensitivity cardiac troponin concentrations. Ann Clin Biochem 2017:4563217734883. doi: 10.1177/0004563217734883.Search in Google Scholar PubMed

12. Kavsak PA, Worster A, Hill SA, MacRae AR, Jaffe AS. Analytical comparison of three different versions of a high-sensitivity cardiac troponin I assay over 10 years. Clin Chim Acta 2017;475:51–5.10.1016/j.cca.2017.10.006Search in Google Scholar PubMed

13. Kavsak PA, Beattie J, Pickersgill R, Ford L, Caruso N, Clark L. A practical approach for the validation and clinical implementation of a high-sensitivity cardiac troponin I assay across a North American city. Pract Lab Med 2015;1:28–34.10.1016/j.plabm.2015.02.001Search in Google Scholar PubMed PubMed Central

14. Herman DS, Ranjitkar P, Yamaguchi D, Grenache DG, Greene DN. Endogenous alkaline phosphatase interference in cardiac troponin I and other sensitive chemiluminescence immunoassays that use alkaline phosphatase activity for signal amplification. Clin Biochem 2016;49:1118–21.10.1016/j.clinbiochem.2016.06.006Search in Google Scholar PubMed

15. Simons J, Beach L, Clark L, Kavsak PA. Matrix and bilirubin interference for high-sensitivity cardiac troponin I. Clin Chim Acta 2015;442:49–51.10.1016/j.cca.2015.01.002Search in Google Scholar PubMed

Received: 2017-12-4
Accepted: 2018-1-17
Published Online: 2018-3-13
Published in Print: 2018-6-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Free light chains in the cerebrospinal fluid. Do we still need oligoclonal IgG?
  4. Reviews
  5. Obese phenotype and natriuretic peptides in patients with heart failure with preserved ejection fraction
  6. Prognostic value of HE4 in patients with ovarian cancer
  7. Opinion Paper
  8. Laboratory hemostasis: from biology to the bench
  9. Genetics and Molecular Diagnostics
  10. Multicenter validation study for the certification of a CFTR gene scanning method using next generation sequencing technology
  11. General Clinical Chemistry and Laboratory Medicine
  12. IL8 and IL16 levels indicate serum and plasma quality
  13. “Send & hold” clinical decision support rules improvement to reduce unnecessary testing of vitamins A, E, K, B1, B2, B3, B6 and C
  14. CSF free light chain identification of demyelinating disease: comparison with oligoclonal banding and other CSF indexes
  15. Search for new biomarkers of pediatric multiple sclerosis: application of immunoglobulin free light chain analysis
  16. The importance of detecting anti-DFS70 in routine clinical practice: comparison of different care settings
  17. Higher D-lactate levels are associated with higher prevalence of small dense low-density lipoprotein in obese adolescents
  18. LC-MSMS assays of urinary cortisol, a comparison between four in-house assays
  19. Optimized angiotensin-converting enzyme activity assay for the accurate diagnosis of sarcoidosis
  20. Quantitative urine test strip reading for leukocyte esterase and hemoglobin peroxidase
  21. Performance evaluation of cobas HBV real-time PCR assay on Roche cobas 4800 System in comparison with COBAS AmpliPrep/COBAS TaqMan HBV Test
  22. Systematic comparison of routine laboratory measurements with in-hospital mortality: ICU-Labome, a large cohort study of critically ill patients
  23. Reference Values and Biological Variations
  24. Establishing reference intervals for sex hormones and SHBG in apparently healthy Chinese adult men based on a multicenter study
  25. Plasma midregional proadrenomedullin (MR-proADM) concentrations and their biological determinants in a reference population
  26. Cancer Diagnostics
  27. Analytical validation of the Hevylite assays for M-protein quantification
  28. Cardiovascular Diseases
  29. Assessing matrix, interferences and comparability between the Abbott Diagnostics and the Beckman Coulter high-sensitivity cardiac troponin I assays
  30. Infectious Diseases
  31. Evaluation of a novel prognostic score based on thrombosis and inflammation in patients with sepsis: a retrospective cohort study
  32. Letters to the Editor
  33. Independent evaluation using fresh patient samples under real clinical conditions is vital for confirming the suitability and marketability of any new HbA1c assay. An example
  34. Anti-streptavidin antibodies mimicking heterophilic antibodies in thyroid function tests
  35. Site-specific DNA methylation detection based on enzyme-linked immunosorbent assay using recombinant methyl-CpG binding protein
  36. 3q29 microduplication in a small family with complex metabolic phenotype from Southern Italy
  37. A D1424N mutation in the MYH9 gene results in macrothrombocytopenia and granulocytic inclusion bodies in a Chinese inherited macrothrombocytopenia pedigree
  38. Evaluation of analytical performance of a chemiluminescence enzyme immunoassay (CLEIA) for cTnI using the automated AIA-CL2400 platform
  39. Cellular markers of eryptosis are altered in type 2 diabetes
  40. Platelet serotonin is not elevated in patients with benign head and neck paragangliomas
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cclm-2017-1122/html
Scroll to top button