Home Identification and quantification of hemoglobins in whole blood: the analytical and organizational aspects of Capillarys 2 Flex Piercing compared with agarose electrophoresis and HPLC methods
Article
Licensed
Unlicensed Requires Authentication

Identification and quantification of hemoglobins in whole blood: the analytical and organizational aspects of Capillarys 2 Flex Piercing compared with agarose electrophoresis and HPLC methods

  • Sara Altinier EMAIL logo , Mariacristina Varagnolo , Martina Zaninotto and Mario Plebani
Published/Copyright: October 12, 2012

Abstract

Background: The present study was conducted to evaluate the analytical performance and the organizational aspects of Capillarys 2 Flex Piercing system (CFP) respect to agarose electrophoresis and HPLC methods in hemoglobinopathies screening.

Methods: The measurement of imprecision in HbA2 and HbF quantification was verified on HbA2 CFP control and on three samples; 74 whole blood samples were used to evaluate migration time imprecision of hemoglobin variants S, C and E (HbS, HbC, and HbE); to compare methods, 451 samples were tested on CFP and HPLC; reference values were verified as value distribution in 160 blood donors and at ROC curve analysis on 449 samples from routine analysis.

Results: Imprecision: the analytical CV%s ranged from 1.25 to 3.9 at HbA2 quantification, the CV% was 3.78 at HbF quantification; the running time imprecision for HbS and HbC and HbE ranged from 0.20 to 0.69%. Method comparison: at regression analysis findings were HbA2: CFP=1.21×HPLC–0.64, HbF: CFP=1.31×HPLC-0.75, HbS: CFP=1.10×HPLC-3.24. Reference values: the HbA2 95th percentile range was 2.5–2.8; HbF was undetectable in 154 out 160 samples tested; at ROC curve analysis the best combination of sensitivity and diagnostic efficiency was obtained using 2.2 and 3.0, as reference values, for HbA2 and 1.1 as the upper reference limit for HbF. Organizational aspects: with respect to the procedures currently implemented in our laboratory CFP requires 2 h less time and obviates the need for some manual steps.

Conclusions: The quantification, reproducibility and diagnostic efficiency provided by CFP in identification and quantification of hemoglobins appear accurate. In addition, the use of primary tubes allows improved safety, and the avoidance of some manual steps, that prolong working time and are a source of possible errors.


Corresponding author: Sara Altinier, Department of Laboratory Medicine, University-Hospital of Padova, Via Giustiniani 2 35128 Padova, Italy, Phone: +39 049 821 8708, Fax: +39 049 8218489

References

1. Vichinsky EP. Changing patterns of thalassemia worldwide. Ann N Y Acad Sci 2005;1054:18–24.10.1196/annals.1345.003Search in Google Scholar PubMed

2. Pack-Mabien A, Haynes J Jr. A primary care provider’s guide to preventive and acute care management of adults and children with sickle cell disease. J Am Acad Nurse Pract 2009;21:250–7.10.1111/j.1745-7599.2009.00401.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000266550800002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar PubMed

3. Cogliandro T, Derchi G, Mancuso L, Mayer MC, Pannone B, Pepe A, et al. Society for the Study of Thalassemia and Hemoglobinopathies (SoSTE. Guideline recommendations for heart complications in thalassemia major. J Cardiovasc Med 2008;9:515–25.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000256854000012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.2459/JCM.0b013e3282f20847Search in Google Scholar PubMed

4. Globin gene server. http://globin.cse.psu.edu. Accessed on 10 January 2012.Search in Google Scholar

5. Gwendolyn MC, Higgins TN. Laboratory investigation of hemoglobinopathies and thalassemias: review and update. Clin Chem 2000;46:1284–90.10.1093/clinchem/46.8.1284Search in Google Scholar

6. Mosca A, Paleari R, Leone D, Ivaldi G. The relevance of hemoglobin F measurement in the diagnosis of thalassemias and related hemoglobinopathies. Clin Biochem 2009;42:1797–801.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000272588500007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.clinbiochem.2009.06.023Search in Google Scholar PubMed

7. Kleinert P, Schmid M, Zurbriggen K, Speer O, Schmugge M, Roschitzki B, et al. Mass spectrometry: a tool for enhanced detection of hemoglobin variants. Clin Chem 2008;54:69–76.10.1373/clinchem.2007.089961Search in Google Scholar PubMed

8. Gosselin RC, Carlin AC, Dwyre DM. Comparison of the BioRad Variant and Primus Ultra2 high-pressure liquid chromatography (HPLC) instruments for the detection of variant hemoglobins. Int J Lab Hematol 2011;33:159–67.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000288127900009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1111/j.1751-553X.2010.01260.xSearch in Google Scholar PubMed

9. Pornprasert S, Kasemrad C, Sukunthamala K. Diagnosis of thalassemia on dried blood spot samples by high performance liquid chromatography. Hemoglobin 2010;34:486–94.10.3109/03630269.2010.513294http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000282891900010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar PubMed

10. Higgins T, Mack M, Khajuria A. Comparison of two methods for the quantification and identification of hemoglobin variants. Clin Biochem 2009;42:701–5.10.1016/j.clinbiochem.2009.01.004http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000265373600023&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar PubMed

11. Ryan K, Bain BJ, Worthington D, James J, Plews D, Mason A, et al. British Committee for Standards in Haematology Significant haemoglobinopathies: guidelines for screening and diagnosis Br J Haematol 2010;149:35–49.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000275501000004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1111/j.1365-2141.2009.08054.xSearch in Google Scholar PubMed

12. Louahabi A, Philippe M, Lali S, Wallemacq P, Maisin D. Evaluation of a new Sebia kit for analysis of hemoglobin fractions and variants on the Capillarys system. Clin Chem Lab Med 2006;44:340–5.10.1515/CCLM.2006.059Search in Google Scholar PubMed

13. Mosca A, Paleari R, Ivaldi G, Galanello R, Giordano PC. The role of haemoglobin A(2. testing in the diagnosis of thalassaemias and related haemoglobinopathies. J Clin Pathol 2009;62:13–7.10.1136/jcp.2008.056945http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000262420400003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar PubMed

14. Stephens AD, Angastiniotis M, Baysal E, Chan V, Fucharoen S, Giordano PC, et al. ICSH recommendations for the measurement of haemoglobin A2. Int J Lab Hematol 2012;34:1–13.10.1111/j.1751-553X.2011.01368.xSearch in Google Scholar PubMed

15. Yang Z, Chaffin CH, Easley PL, Thigpen B, Reddy VV. Prevalence of elevated hemoglobin A2 measured by the CAPILLARYS system. Am J Clin Pathol 2009;131:42–8.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000262314500006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1309/AJCPD0PJGFT0SXMKSearch in Google Scholar PubMed

16. Lafferty J. College of American Pathologists hemoglobinopathy survey HG–B. Chicago, IL: College of American Pathologists, 1999.Search in Google Scholar

17. Cotton F, Malaviolle X, Vertongen F, Gulbis B. Evaluation of an automated capillary electrophoresis system in the screening for hemoglobinopathies. Clin Lab 2009;55:217–21.Search in Google Scholar PubMed

18. Higgins TN, Khajuria A, Mack M. Quantification of HbA(2. in patients with and without beta-thalassemia and in the presence of HbS, HbC, HbE, and HbD Punjab hemoglobin variants: comparison of two systems. Am J Clin Pathol 2009;131: 357–62.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000263427400007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1309/AJCP28QKSOPHYOBCSearch in Google Scholar PubMed

19. Keren DF, Hedstrom D, Gulbranson R, Ou CN, Bak R. Comparison of Sebia Capillarys capillary electrophoresis with the Primus high-pressure liquid chromatography in the evaluation of hemoglobinopathies Am J Clin Pathol 2008;130:824–31.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000260188600020&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1309/AJCPQY80HZWHHGZFSearch in Google Scholar PubMed

20. Anagnostopoulos K, Tentes I, Kalleas C, Margaritis D, Toli A, Pendilas D, et al. Effect of HbS in the determination of HbA2 with the Menarini HA-8160 analyzer and comparison with other instruments. Int J Lab Hematol 2009;31:665–72.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000271055200011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1111/j.1751-553X.2008.01094.xSearch in Google Scholar PubMed

21. Giambona A, Passarello C, Renda D, Maggio A. The significance of the hemoglobin A2 value in screening for hemoglobinopathies. Clin Biochem 2009;42:1786–96.10.1016/j.clinbiochem.2009.06.026http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000272588500006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar PubMed

22. Van Delft P, Lenters E, Bakker-Verweij M, de Korte M, Baylan U, Harteveld CL, et al. Evaluating five dedicated automatic devices for haemoglobinopathy diagnostics in multi-ethnic populations. Int J Lab Hematol 2009;31:484–95.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000269265900002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1111/j.1751-553X.2009.01158.xSearch in Google Scholar PubMed

Received: 2012-01-31
Accepted: 2012-09-06
Published Online: 2012-10-12
Published in Print: 2013-04-01

©2013 by Walter de Gruyter Berlin Boston

Articles in the same Issue

  1. Letters to the Editor
  2. Missing agreement between the two IMMULITE® PSA assays
  3. “Cerebrovascular stressing”: dipyridamole-induced S100B elevation predicts ischemic cerebrovascular events
  4. Discrepancy in lamellar body counts (LBCs) between the Sysmex XE-2100 and Sysmex XT-2000i instruments
  5. Interphase fluorescent in situ hybridization detection of the 7q11.23 chromosomal inversion in a clinical laboratory: automated versus manual scoring
  6. Adrenocorticotropic hormone stability in preanalytical phase depends on temperature and proteolytic enzyme inhibitor
  7. The impact on costs and efficiency of reducing the number of collected tubes
  8. Improved software on the Sysmex XE-5000 BF mode for counting leukocytes in cerebrospinal fluid
  9. First trimester placental growth factor and soluble fms-like tyrosine kinase 1 are significantly related to PAPP-A levels
  10. Preliminary evaluation of complete blood cell count on Mindray BC-6800
  11. Rational use of laboratory tests: albuminuria
  12. Masthead
  13. Masthead
  14. Editorials
  15. Fifty years of CCLM – invitation to join us for a reception in Milan
  16. Personalized (laboratory) medicine: a bridge to the future
  17. PSA, PCA3 and the phi losophy of prostate cancer management
  18. Reviews
  19. Gender medicine: a task for the third millennium
  20. Evaluation of [−2] proPSA and Prostate Health Index (phi) for the detection of prostate cancer: a systematic review and meta-analysis
  21. Harmonization in laboratory medicine: the complete picture
  22. Opinion Papers
  23. Glycemic control in the clinical management of diabetic patients
  24. Time for a conceptual shift in assessment of internal quality control for whole blood or cell-based testing systems? An evaluation using platelet function and the PFA-100 as a case example
  25. Guidelines and Recommendations
  26. A position paper of the EFLM Committee on Education and Training and Working Group on Distance Education Programmes/E-Learning: developing an e-learning platform for the education of stakeholders in laboratory medicine
  27. General Clinical Chemistry and Laboratory Medicine
  28. A novel weighted cumulative delta-check method for highly sensitive detection of specimen mix-up in the clinical laboratory
  29. Identification and quantification of hemoglobins in whole blood: the analytical and organizational aspects of Capillarys 2 Flex Piercing compared with agarose electrophoresis and HPLC methods
  30. Determination of the fatty acid profile of neutral lipids, free fatty acids and phospholipids in human plasma
  31. Urinary iodine concentrations of pregnant women in Ukraine
  32. Delay in the measurement of eosin-5′-maleimide (EMA) binding does not affect the test result for the diagnosis of hereditary spherocytosis
  33. Faecal calprotectin: comparative study of the Quantum Blue rapid test and an established ELISA method
  34. Target analyte quantification by isotope dilution LC-MS/MS directly referring to internal standard concentrations – validation for serum cortisol measurement
  35. Reference Values and Biological Variations
  36. Reference values and upper reference limits for 26 trace elements in the urine of adults living in Belgium
  37. Biological variation and reference change values of common clinical chemistry and haematologic laboratory analytes in the elderly population
  38. Indirect determination of pediatric blood count reference intervals
  39. Cancer Diagnostics
  40. Suitability of quality control materials for prostate-specific antigen (PSA) measurement: inter-method variability of common tumor marker control materials
  41. Prostate cancer antigen 3 (PCA3) RNA detection in blood and tissue samples for prostate cancer diagnosis
  42. Serum levels of cancer biomarkers in diabetic and non-diabetic proteinuric patients: a preliminary study
  43. Infectious Diseases
  44. Polymorphic mononuclear neutrophils CD64 index for diagnosis of sepsis in postoperative surgical patients and critically ill patients
  45. Plasma long pentraxin 3 (PTX3) concentration is a novel marker of disease activity in patients with community-acquired pneumonia
Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cclm-2012-0061/html
Scroll to top button