Home Life Sciences Analysis of Peruvian seaweed exports during the period 1995–2020 using trade data
Article
Licensed
Unlicensed Requires Authentication

Analysis of Peruvian seaweed exports during the period 1995–2020 using trade data

  • José Avila-Peltroche

    José Avila-Peltroche is a postdoctoral researcher at the Plant Phylogeny Laboratory, Chosun University, South Korea. He obtained his BSc in Biological Sciences from Ricardo Palma University (Peru) and his PhD from Chosun University. His research interests include taxonomy, phylogeny, culture and cryopreservation of macroalgae, focusing on protoplast isolation and whole plant regeneration from Phaeophyceae. He is also co-founder and administrator of the science popularization initiative Macroalgas Marinas del Peru (Seaweeds of Peru).

    ORCID logo EMAIL logo
    and Gunter Villena-Sarmiento

    Gunter Villena-Sarmiento is a Fishing Engineer with a specialty in Aquaculture from the National Agrarian University La Molina (Peru). He has 25 years of experience developing products, processes, and cultivation of marine macroalgae. Gunter’s experience also includes training on seaweed biology and cultivation in Peru and Chile. He currently works at Seaweed Technology EIRL and as an independent consultant in business management, innovation, and technology.

Published/Copyright: April 25, 2022

Abstract

Peru is the second largest seaweed producer in the Americas. Nevertheless, the actual extent and trends of exports of various seaweeds are not known. This study is the first to summarize and analyze the official seaweed export statistics for Peru, which cover 1995–2020. Total exports showed a considerable increase from 2008, reaching their highest historical volume in 2019 (33,948 metric tons dry weight plus 3 metric tons of fresh/frozen weight). China dominated the market by importing 90% of the total Peruvian production of seaweeds. A low percentage of the exports (3%) corresponded to red seaweeds (mainly Chondracanthus chamissoi for industrial use). Export volumes of C. chamissoi have been decreasing since 2015, however prices have continued to increase. Brown seaweeds accounted for 97% of the exports. These were dominated by Lessonia berteroana until 2007 and then by Macrocystis pyrifera. The latter showed the highest overall growth rate (47%). Wet biomass estimations showed a gap between the data reflecting what is officially harvested versus what is actually exported. This “unreported biomass” might reflect the government’s lack of control of seaweed harvesting. Finally, the COVID-19 pandemic showed a negative impact on exports with M. pyrifera being the most affected species.


Corresponding author: José Avila-Peltroche, Department of Life Science, Chosun University, Gwangju 61452, Korea, E-mail:

About the authors

José Avila-Peltroche

José Avila-Peltroche is a postdoctoral researcher at the Plant Phylogeny Laboratory, Chosun University, South Korea. He obtained his BSc in Biological Sciences from Ricardo Palma University (Peru) and his PhD from Chosun University. His research interests include taxonomy, phylogeny, culture and cryopreservation of macroalgae, focusing on protoplast isolation and whole plant regeneration from Phaeophyceae. He is also co-founder and administrator of the science popularization initiative Macroalgas Marinas del Peru (Seaweeds of Peru).

Gunter Villena-Sarmiento

Gunter Villena-Sarmiento is a Fishing Engineer with a specialty in Aquaculture from the National Agrarian University La Molina (Peru). He has 25 years of experience developing products, processes, and cultivation of marine macroalgae. Gunter’s experience also includes training on seaweed biology and cultivation in Peru and Chile. He currently works at Seaweed Technology EIRL and as an independent consultant in business management, innovation, and technology.

Acknowledgments

We kindly appreciate Gustavo Hernandez Carmona for his suggestions and English review. The authors thank the reviewers for their contribution to our work.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission. All authors contributed to the study conception and design. Export data was collected by Gunter Villena-Sarmiento. Data analysis was performed by José Avila-Peltroche. The first draft of the manuscript was written by José Avila-Peltroche and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Acleto, C. (1986). Algas marinas del Perú de importancia económica. Serie de Div. Museo de Historia Natural “Javier Prado”, Vol. 5. Dep. de Botánica, Lima, pp. 1–107.Search in Google Scholar

Acleto, C. (1998). The seaweed resources of Peru. In: Critchley, A.T., Ohno, M., Largo, D.B., and Gillespie, R.D. (Eds.), Seaweed resources of the world. Yokosuka: Japan International Cooperation Agency, pp. 343–346.Search in Google Scholar

Arakaki, N., Schmidt, W.E., Carbajal, P., and Fredericq, S. (2015). First occurrence of Gracilaria chilensis, and distribution of Gracilariopsis lemaneiformis (Gracilariaceae, Gracilariales) in Peru on the basis of rbcL sequence analysis. Phytotaxa 208: 175–181, https://doi.org/10.11646/phytotaxa.208.2.7.Search in Google Scholar

Araya, P., Barahona, N., Olguín, A., Fuentes, J., and Vicencio, C. (2018). Monitoreo de piloto algas pardas en las regiones de Atacama y Coquimbo. Convenio de Desempeño IFOP. Ministerio de Economía, Informe Final, Valparaíso.Search in Google Scholar

Bakun, A. and Weeks, S.J. (2008). The marine ecosystem off Peru: what are the secrets of its fishery productivity and what might its future hold? Prog. Oceanogr. 79: 290–299, https://doi.org/10.1016/j.pocean.2008.10.027.Search in Google Scholar

Bixler, H.J. and Porse, H. (2011). A decade of change in the seaweed hydrocolloids industry. J. Appl. Phycol. 23: 321–335, https://doi.org/10.1007/s10811-010-9529-3.Search in Google Scholar

Buschmann, A.H., Hernández-González, M.C., Aroca, G., and Gutierrez, A. (2001). Seaweed farming in Chile: a review. Global aquaculture advocate, Available at: www.aquaculturealliance.org/advocate/seaweed-farming-in-chile-a-review/?savePDF=cf4883b0b60c43472a1e3165efd56633&article=seaweed-farming-in-chile-a-review (Accessed 20 December 2021).Search in Google Scholar

Cai, J., Lovatelli, A., Aguilar-Manjarrez, J., Cornish, L., Dabbadie, L., Desrochers, A., Diffey, S., Garrido Gamarro, E., Geehan, J., Hurtado, A., et al.. (2021). Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development. In: FAO fisheries and aquaculture circular no. 1229.Search in Google Scholar

Campbell, R. and Hotchkiss, S. (2017). Carrageenan industry market overview. In: Hurtado, A., Critchley, A., and Neish, I. (Eds.), Tropical seaweed farming trends, problems and opportunities. Developments in applied phycology, Vol. 9. Cham: Springer, pp. 193–205.10.1007/978-3-319-63498-2_13Search in Google Scholar

Camus, C., del Carmen Hernández-González, M., and Buschmann, A.H. (2019). The seaweed resources of Chile over the period 2006–2016: moving from gatherers to cultivators. Bot. Mar. 62: 237–247, https://doi.org/10.1515/bot-2018-0030.Search in Google Scholar

Carbajal, P. and Gamarra, A. (2018). Guía para la recolección y reconocimiento de macroalgas pardas comerciales del Perú. Inf. Inst. Mar. Perú 45: 169–181.Search in Google Scholar

Carbajal, P., Gamarra Salazar, A., Moore, P.J., and Pérez‐Matus, A. (2022). Different kelp species support unique macroinvertebrate assemblages, suggesting the potential community‐wide impacts of kelp harvesting along the Humboldt current system. Aquat. Conserv. 32: 14–27, https://doi.org/10.1002/aqc.3745.Search in Google Scholar

Dharmananda, S. (2002). The nutritional and medicinal value of seaweeds used in Chinese medicine, Available at: http://www.itmonline.org/arts/seaweed.htm (Accessed 20 December 2021).Search in Google Scholar

Fauzi, A. and Anna, Z. (2012). Growth and instability of small pelagic fisheries of the north coast of Java, Indonesia: lesson learned for fisheries policy. China-USA Bus. Rev. 11: 739–748.10.17265/1537-1514/2012.06.002Search in Google Scholar

FAO (2018). The global status of seaweed production, trade and utilization, Vol. 124. Rome, Italy: Globefish Research Programme.Search in Google Scholar

FAO (2020). The state of world fisheries and aquaculture 2020. Rome, Italy: Sustainability in action.Search in Google Scholar

Fernández, E., Cordova, C., and Tarazona, J. (1999). Condiciones del bosque submareal de Lessonia trabeculata en la isla Independencia durante el evento El Niño 1997–1998. Rev. Peru. Biol. 6: 47–59.10.15381/rpb.v6i3.8430Search in Google Scholar

Hayashi, L., Bulboa, C., Kradolfer, P., Soriano, G., and Robledo, D. (2013). Cultivation of red seaweeds: a Latin American perspective. J. Appl. Phycol. 26: 719–727, https://doi.org/10.1007/s10811-013-0143-z.Search in Google Scholar

IMARPE (2014). Estudios de poblaciones de macroalgas. IMARPE, Callao, Peru, Available at: http://www.imarpe.pe/imarpe/archivos/macro_algas/estud_macroalg.pdf (Accessed 20 December 2021).Search in Google Scholar

Kalidas, K., Mahendran, K., and Akila, K. (2020). Growth, instability and decomposition analysis of coconut in India and Tamil Nadu, Western Tamil Nadu, India: a time series comparative approach. J. Econ. Manag. Trade 26: 59–66, https://doi.org/10.9734/jemt/2020/v26i330238.Search in Google Scholar

Kang, H., Yang, Z., and Zhang, Z. (In press). The competitiveness of China’s seaweed products in the international market from 2002 to 2017. Aquac. Fish, https://doi.org/10.1016/j.aaf.2021.10.003.Search in Google Scholar

La República (2018). En operativo decomisan 3500 kilos de algas marinas extraídas de forma ilegal en Arequipa, Available at: https://larepublica.pe/sociedad/1365108-arequipa-decomisan-3500-kilos-algas-marinas-extraidas-forma-ilegal-arequipa/ (Accessed 20 December 2021).Search in Google Scholar

Leandro, A., Pereira, L., and Gonçalves, A.M.M. (2019). Diverse applications of marine macroalgae. Mar. Drugs 18: 17, https://doi.org/10.3390/md18010017.Search in Google Scholar PubMed PubMed Central

Lotze, H.K., Milewski, I., Fast, J., Kay, L., and Worm, B. (2019). Ecosystem-based management of seaweed harvesting. Bot. Mar. 62: 395–409, https://doi.org/10.1515/bot-2019-0027.Search in Google Scholar

Macchiavello, J., Bulboa, C., Sepúlveda, C., Véliz, K., Sáez, F., Vega, L., and Véliz, R. (2012). Manual de cultivo de Chondracanthus chamissoi (chicorea de mar): alternativas tecnológicas para el cultivo de C. chamissoi en la zona norte de Chile a partir de discos de fijación secundaria. Coquimbo: Universidad Católica del Norte.Search in Google Scholar

Mangano, M.C., Berlino, M., Corbari, L., Milisenda, G., Lucchese, M., Terzo, S., Bosch-Belmar, M., Azaza, M.S., Babarro, J.M.F., Bakiu, R., et al.. (2022). The aquaculture supply chain in the time of Covid-19 pandemic: vulnerability, resilience, solutions and priorities at the global scale. Environ. Sci. Pol. 127: 98–110, https://doi.org/10.1016/j.envsci.2021.10.014.Search in Google Scholar PubMed PubMed Central

McHugh, D.J. (1987). Production, properties and uses of alginates. Production and utilization of products from commercial seaweeds. FAO Fish. Tech. Pap. 288: 58–115.Search in Google Scholar

Mouritsen, O.G., Rhatigan, P., and Pérez-Lloréns, J.L. (2018). World cuisine of seaweeds: science meets gastronomy. Int. J. Gastron. Food Sci. 14: 55–65, https://doi.org/10.1016/j.ijgfs.2018.09.002.Search in Google Scholar

Noriega, C. (2011). Algas comestibles del Perú. Pan del futuro. Lima: Universidad de San Martín de Porres.Search in Google Scholar

Patterson, T.C. and Moseley, M.E. (1968). Late preceramic and early ceramic cultures of the central coast of Peru. Ñawpa Pacha 6: 115–133, https://doi.org/10.1179/naw.1968.6.1.006.Search in Google Scholar

Pauly, D., Christensen, V., Guénette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, R., and Zeller, D. (2002). Towards sustainability in world fisheries. Nature 418: 689–695, https://doi.org/10.1038/nature01017.Search in Google Scholar PubMed

Pérez-Araneda, K., Zevallos, S., Arakaki, N., Gamarra, A., Carbajal, P., and Tellier, F. (2020). Lessonia berteroana en Perú: comprobación de la identidad de la especie y diversidad genética en el borde norte de distribución. Rev. Biol. Mar. Oceanogr. 55: 270–276.10.22370/rbmo.2020.55.3.2591Search in Google Scholar

Porse, H. and Rudolph, B. (2017). The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J. Appl. Phycol. 29: 2187–2200, https://doi.org/10.1007/s10811-017-1144-0.Search in Google Scholar

PRODUCE (2009). DM N° 019-2009-PRODUCE. Aprueban reglamento de ordenamiento pesquero de las macroalgas marinas y modifican reglamento de la Ley General de Pesca aprobado por decreto supremo N° 012-2001-PE y el reglamento de inspecciones y sanciones pesqueras y acuícolas aprobado por decreto supremo N° 016-2007-PRODUCE, Available at: https://snp.org.pe/docs/9%20ROP%20MACROALGAS.pdf (Accessed 8 December 2021).Search in Google Scholar

PRODUCE (2021a). Anuario estadístico pesquero y acuícola 2020. Lima: Ministerio de la Producción.Search in Google Scholar

PRODUCE (2021b). Concurso PNIPA 2018–2019. Proyecto nacional de innovación en acuicultura orden de mérito técnico (OMT) de propuestas de subproyectos de investigación aplicada y desarrollo experimental (SIADE) - segunda ventanilla-Lista N°2. Ministerio de la Producción, Available at: https://www.pnipa.gob.pe/wp-content/uploads/2020/07/LISTA-OMT_SIA-SIADE_Segunda-Ventanilla_Lista-2.pdf (Accessed 13 December 2021).Search in Google Scholar

Radhakrishnan, K., Tesfom, M.A., Infantina, J.A., Krishnan, M., and Velmurugan, R. (2016). Marine fisheries growth, performance and institutional arrangements in Tamil Nadu. Int. J. Fish. Aquat. Stud. 4: 342–346.Search in Google Scholar

Sarà, G., Mangano, M.C., Berlino, M., Corbari, L., Lucchese, M., Milisenda, G., Terzo, S., Azaza, M.S., Babarro, J.M.F., Bakiu, R., et al.. (2022). The synergistic impacts of anthropogenic stressors and COVID-19 on aquaculture: a current global perspective. Rev. Fish. Sci. Aquac. 30: 123–135.10.1080/23308249.2021.1876633Search in Google Scholar

Vásquez, J.A. (2016). The brown seaweeds fishery in Chile. In: Mikkola, H. (Ed.), Fisheries and aquaculture in the modern world. Rijeka: InTechOpen, pp. 123–141.10.5772/62876Search in Google Scholar

Vásquez, J.A., Vega, J.A., and Buschmann, A.H. (2006). Long term variability in the structure of kelp communities in northern Chile and the 1997–98 ENSO. J. Appl. Phycol. 18: 505–519.10.1007/978-1-4020-5670-3_35Search in Google Scholar

Zhang, J. (2018). Seaweed industry in China, Available at: https://algenett.no/sites/a/algenett.no/files/seaweed_china_2018.pdf (Accessed 9 December 2021).Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/bot-2022-0002).


Received: 2022-01-04
Revised: 2022-03-28
Accepted: 2022-04-07
Published Online: 2022-04-25
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/bot-2022-0002/pdf
Scroll to top button