Home Genetic variability of charophyte algae in the Baltic Sea area
Article
Licensed
Unlicensed Requires Authentication

Genetic variability of charophyte algae in the Baltic Sea area

  • Petra Nowak

    Petra Nowak is a marine biologist specialising in the biodiversity and evolution of macroalgae and has been conducting research at the University of Rostock. Beside the taxonomical aspect, she is focussed on the molecular and the morphological approaches toward understanding the acclimation and adaptation processes of macroalgae.

    EMAIL logo
    and Hendrik Schubert

    Hendrik Schubert is a marine biologist specialising in the aquatic ecology with a focus on ecophysiology of autotrophs. Since 15 years he is Professor for Ecology at the University of Rostock, investigating acclimation of organisms to the brackish conditions of the Baltic Sea and unravelling the trophic interactions and the seasonality of the coastal ecosystems.

Published/Copyright: January 7, 2019

Abstract

The Baltic Sea, a young habitat in geological terms, is characterised by strong climatic and salinity gradients that determine species distribution and trigger adaptation processes. The aim here was to test the hypothesis that Baltic Sea charophytes which originate from large freshwater populations exhibit a higher genetic variability than euryhaline charophyte species, restricted to a small number of brackish-marine populations. For this, genetic variability of euryhaline, mesohaline and halotolerant freshwater charophytes with different distribution patterns and population sizes were analysed. Euryhaline Lamprothamnium papulosum, restricted to a few and small populations in the Baltic Sea, showed a complete lack of genetic variability. Also euryhaline Tolypella with large and widely distributed populations displayed only low genetic variability. On the other hand, mesohaline Chara canescens, one of the most common charophytes in the Baltic Sea, exhibited comparatively high genetic variability, in spite of its parthenogenetic mode of reproduction. Halotolerant Chara baltica, originating from freshwater ancestors with a huge number of populations all over Europe, showed a rather restricted genetic variability, indicating a habitat filter acting prior to colonisation of brackish habitats.

About the authors

Petra Nowak

Petra Nowak is a marine biologist specialising in the biodiversity and evolution of macroalgae and has been conducting research at the University of Rostock. Beside the taxonomical aspect, she is focussed on the molecular and the morphological approaches toward understanding the acclimation and adaptation processes of macroalgae.

Hendrik Schubert

Hendrik Schubert is a marine biologist specialising in the aquatic ecology with a focus on ecophysiology of autotrophs. Since 15 years he is Professor for Ecology at the University of Rostock, investigating acclimation of organisms to the brackish conditions of the Baltic Sea and unravelling the trophic interactions and the seasonality of the coastal ecosystems.

Acknowledgements

Tina Kyrkander, Gustav Johansson, Ralf Becker, Klaus van de Weyer, Ralf Schaible, Anja Holzhausen, Irmgard Blindow, Tim Steinahardt, Angela Döge, Susana Romo and many others are gratefully acknowledged for collecting and providing samples. Ulla von Ammon (Cawthron Institute, New Zealand), Claudia Lott as well as Ralf Bastrop (University of Rostock, Department of Animal Physiology) and co-workers are gratefully acknowledged for sequencing many samples. We would like to thank Susanne Thümecke for critical reading and for thorough language editing. We gratefully acknowledge the valuable comments of our anonymous reviewers and our editor Matthew Dring for their helpful suggestions. This work was partly supported by the European Regional Development Fund (ERDF, UHRO26).

References

Bandelt, H.J., P. Forster and A. Rohl. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16: 37–48.10.1093/oxfordjournals.molbev.a026036Search in Google Scholar

Bergström, L., A. Tatarenkov, K. Johannesson, R.B. Jönsson and L. Kautsky. 2005. Genetic and morphological identification of Fucus radicans sp. nov. (Fucales, Phaeophyceae) in the brackish Baltic Sea. J. Phycol. 41: 1025–1038.10.1111/j.1529-8817.2005.00125.xSearch in Google Scholar

Bisson, M.A. and G.O. Kirst. 1995. Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften 82: 461–471.10.1007/BF01131597Search in Google Scholar

Björck, S. 1995. A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quat. Int. 27: 19–40.10.1016/1040-6182(94)00057-CSearch in Google Scholar

Blümel, C. 2004. Chapter 4.3 Chara baltica Bruzelius 1824. In: (H. Schubert and I. Blindow, eds.) Charophytes of the Baltic Sea. Gartner, Ruggel, Königstein. pp. 53–63.Search in Google Scholar

Boegle, M.G., S. Schneider, A. Melzer and H. Schubert. 2010a. Distinguishing Chara baltica, C. horrida and C. liljebladii – conflicting results from analysis of morphology and genetics. Charophytes 2: 53–58.Search in Google Scholar

Boegle, M.G., S. Schneider, H. Schubert and A. Melzer. 2010b. Chara baltica Bruzelius 1824 and Chara intermedia A. Braun 1859 – distinct species or habitat specific modifications? Aquat. Bot. 93: 195–201.10.1016/j.aquabot.2010.07.001Search in Google Scholar

Du, Z.-Y. and Q.-F. Wang. 2016. Phylogenetic tree of vascular plants reveals the origins of aquatic angiosperms. J. Sys. Evo. 54: 342–348.10.1111/jse.12182Search in Google Scholar

Gabrielsen, T.M., C. Brochmann and J. Rueness. 2002. The Baltic Sea as a model system for studying postglacial colonization and ecological differentiation, exemplified by the red alga Ceramium tenuicorne. Mol. Ecol. 11: 2083–2095.10.1046/j.1365-294X.2002.01601.xSearch in Google Scholar PubMed

García, A. and A.R. Chivas. 2004. Quaternary and extant euryhaline Lamprothamnium Groves (Charales) from Australia: Gyrogonite morphology and paleolimnological significance. J. Paleolimnol. 31: 321–341.10.1023/B:JOPL.0000021725.32489.bdSearch in Google Scholar

Garniel, A. 2003. Lamprothamnium sonderi. In: (Schubert H. and I. Blindow, eds.) Charophytes of the Baltic Sea. Gantner, Ruggel, Königstein, Germany. pp. 163–167.Search in Google Scholar

Hall, T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98.Search in Google Scholar

Hamann, U. and R. Becker. 2016. Kapitel 12.36 Tolypella nidifica. In:(A.G. Chara, eds.) Armleuchteralgen. Die Characeen Deutschlands. Springer, Berlin Heidelberg. pp. 529–538.Search in Google Scholar

James, J.W. 1970. The founder effect and response to artificial selection. Genet. Res. 16: 241–250.10.1017/S0016672300002500Search in Google Scholar

Johannesson, K. and C. André. 2006. Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Mol. Ecol. 15: 2013–2029.10.1111/j.1365-294X.2006.02919.xSearch in Google Scholar PubMed

Krause, W. 1997. Charales (Charophyceae). In: (A. Ettl, G. Gärtner, H. Heynigand and D. Mollenhauer, eds.) Süßwasserflora von Mitteleuropa. G. Fischer, Jena. pp. 202.Search in Google Scholar

Kumar, S., G. Stecher and K. Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870–1874.10.1093/molbev/msw054Search in Google Scholar

Lakowitz, K. 1929. Die Algenflora der gesamten Ostsee (ausschl. Diatomeen). Bericht des Westpreußischen Botanisch-Zoologischen Vereins, Danzig. pp. 474.Search in Google Scholar

Lambert, E. 2013. Tolypella salina R. Cor., sur la façade atlantique. Contribution à l’amélioration des connaissances. Rapport. – Université Catholique de l’Ouest (http://www.fcbn.fr/sites/fcbn.fr/files/ressource_telechargeable/130117_rapport_tolypella_salina_lambert_vdef.pdf).Search in Google Scholar

Lambert, E., D. Desmots, J. LeBail, J.-B. Mouronval and J.-C. Felzines. 2013. Tolypella salina R. Cor. on the French Atlantic coast: biology and ecology. Acta Bot. Gallica 160: 107–119.10.1080/12538078.2013.823105Search in Google Scholar

Lüning, K. 1985. Meeresbotanik: Verbreitung, Ökophysiologie und Nutzung der marinen Makroalgen: 28 Tabellen. Thieme, Stuttgart. pp. 375.Search in Google Scholar

Martin, G., K. Torn, I. Blindow, H. Schubert, R. Munsterhjelm and C. Henricson. 2004. Chapter 1. Introduction to charophytes. In: (H. Schubert and Blindow, eds.) Charophytes of the Baltic Sea. Springer, Berlin Heidelberg: 3–14.Search in Google Scholar

Martín-Closas, C., A. Vicente, J. Pérez-Cano, J. Sanjuan and T. Bover-Arnal. 2018. On the earliest occurrence of Tolypella section Tolypella in the fossil record and the age of major clades in extant Characeae. Bot. Lett. 165: 1–11.10.1080/23818107.2017.1387078Search in Google Scholar

Nies, G. and T.B.H. Reusch. 2005. Evolutionary divergence and possible incipient speciation in post-glacial populations of a cosmopolitan aquatic plant. J. Evol. Biol. 18: 19–26.10.1111/j.1420-9101.2004.00818.xSearch in Google Scholar

Nowak, P., H. Schubert and R. Schaible. 2016. Molecular evaluation of the validity of the morphological characters of three Swedish Chara sections: Chara, Grovesia, and Desvauxia (Charales, Charophyceae). Aquat. Bot. 134: 113–119.10.1016/j.aquabot.2016.08.001Search in Google Scholar

Nowak, P., T. Steinhardt, U. von Ammon, H. Rohde, A. Schoor, A. Holzhausen, R. Schaible and H. Schubert. 2018. Diaspore bank analysis of Baltic coastal waters. Bot. Lett. 165: 159–173.10.1080/23818107.2017.1400464Search in Google Scholar

Pereyra, R.T., L. Bergström, L. Kautsky and K. Johannesson. 2009. Rapid speciation in a newly opened postglacial marine environment, the Baltic Sea. BMC Evol. Biol. 9: 70.10.1186/1471-2148-9-70Search in Google Scholar

Pérez, W., J. Hall, R. McCourt and K.G. Karol. 2014. Phylogeny of North America Tolypella (Charophyceae, Charophyta) based on plastid DNA sequences with a description of Tolypella ramosissima sp. nov. J. Phycol. 50: 776–789.10.1111/jpy.12219Search in Google Scholar

Pérez, W., M.T. Casanova, J.D. Hall, R.M. McCourt and K.G. Karol. 2017. Phylogenetic congruence of ribosomal operon and plastid gene sequences for the Characeae with an emphasis on Tolypella (Characeae, Charophyceae). Phycologia 56: 230–237.10.2216/16-16.1Search in Google Scholar

Posada, D. and K.A. Crandall. 2001. Intraspecific gene genealogies: trees grafting into networks. Trends Ecol. Evol. (Amst.) 16: 37–45.10.1016/S0169-5347(00)02026-7Search in Google Scholar

Reinke, J. 1889. Algenflora der westlichen Ostsee deutschen Antheils: Eine systematischpflanzengeographische Studie, Bericht der Kommission zur Wissenschaftlichen Untersuchung der Deutschen Meere, Kiel. pp. 101.Search in Google Scholar

Schaible, R., I. Bergmann, M. Boegle, A. Schoor and H. Schubert. 2009. Genetic characterisation of sexually and parthenogenetically reproductive populations of Chara canescens (Charophyceae) using AFLP, rbcL, and SNP markers. Phycologia 48: 105–117.10.2216/08-58.1Search in Google Scholar

Schiewer, U. (eds.). 2008. Ecology of Baltic Coastal Waters. Springer, Berlin Heidelberg. pp. 430.10.1007/978-3-540-73524-3Search in Google Scholar

Schneider, S., P. Nowak, U.V. Ammon and A. Ballot. 2016. Species differentiation in the genus Chara (Charophyceae): considerable phenotypic plasticity occurs within homogenous genetic groups. Eur. J. Phycol. 51: 282–293.10.1080/09670262.2016.1147085Search in Google Scholar

Schubert, H. and I. Blindow, (eds.). 2004. Charophytes of the Baltic Sea. Gartner, Ruggel, Königstein, Germany. pp. 326.Search in Google Scholar

Schubert, H., P. Feuerpfeil, R. Marquardt, I.V. Telesh and S.O. Skarlato. 2011. Macroalgal diversity along the Baltic Sea salinity gradient challenges Remane’s species-minimum concept. Mar. Pollut. Bull. 62: 1948–1956.10.1016/j.marpolbul.2011.06.033Search in Google Scholar PubMed

Schubert, H., I. Blindow and K. van de Weyer. 2016. Kapitel 12.14 Chara papillosa. In: (A.G. Chara, eds.) Armleuchteralgen. Die Characeen Deutschlands. Springer, Berlin Heidelberg. pp. 326–336.Search in Google Scholar

Schudack, M. 2016. Kapitel 13 Vorkommen fossiler Charophyten in Deutschland. In: (AG Characeen Deutschlands, eds.). Armleuchteralgen Die Characeen Deutschlands. Springer, Berlin, Heidelberg. pp. 565–594.10.1007/978-3-662-47797-7_13Search in Google Scholar

Sonder, C. 1890. Die Characeen der Provinz Schleswig Holstein und Lauenburg nebst eingeschlossenen fremden Gebietstheilen. Inaugural Dissertation, University of Rostock, Rostock. pp. 64.Search in Google Scholar

Telesh, I.V., H. Schubert and S.O. Skarlato. 2013. Life in the salinity gradient: Discovering mechanisms behind a new biodiversity pattern. Estuar. Coast. Shelf Sci. 135: 317–327.10.1016/j.ecss.2013.10.013Search in Google Scholar

van de Weyer, K. 2016. Kapitel 11 Bestimmungsschlüssel. In: (A.G. Chara, eds.) Armleuchteralgen. Die Characeen Deutschlands. Springer, Berlin Heidelberg. pp. 193–208.10.1007/978-3-662-47797-7_11Search in Google Scholar

Wood, R.D. 1962. New combinations and taxa in the revision of Characeae. Taxon 11: 7–25.10.2307/1216853Search in Google Scholar

Wood, R.D. and K. Imahori. 1965. A revision of the Characeae. First Part: Monograph of the Characeae. Verlag von J. Cramer, Weinheim. pp. 904.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/bot-2018-0021).


Received: 2018-03-01
Accepted: 2018-12-13
Published Online: 2019-01-07
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bot-2018-0021/html
Scroll to top button