Home Life Sciences Phytohormones in red seaweeds: a technical review of methods for analysis and a consideration of genomic data
Article
Licensed
Unlicensed Requires Authentication

Phytohormones in red seaweeds: a technical review of methods for analysis and a consideration of genomic data

  • Izumi C. Mori

    Izumi C. Mori obtained his PhD from Nagoya University in 1998. He established the LC–MS equipment in the Institute of Plant Science and Resources, Okayama University, several years ago. His research focuses on phytohormone signaling of stomata.

    , Yoko Ikeda

    Yoko Ikeda got her PhD at Kyoto University in 2007. Her main research interests are plant epigenetic mechanisms in reproduction and environmental response. She also began to work on plant hormone research at Okayama University in 2013.

    , Takakazu Matsuura

    Takakazu Matsuura started to work as technical staff in Institute of Plant Science and Resources, Okayama University, at 1991. He is experienced in LC-MS analysis and research on seed dormancy in wheat.

    , Takashi Hirayama

    Takashi Hirayama obtained his PhD from Kyoto University in 1992. He has been studying plant hormone signaling mechanisms by mainly applying molecular genetic approaches. His current interest is focused on understanding of how plants integrate various physiological and environmental information and choose the best response.

    and Koji Mikami

    Koji Mikami obtained his PhD from Hokkaido University in 1990. His research currently focuses on regulatory machineries of life-cycle, development and abiotic stress responses in seaweeds to understand how multicellular marine organisms acclimate to environmental stress and acquire stress tolerance for supporting their correct developmental programs under strict stress conditions.

    EMAIL logo
Published/Copyright: March 30, 2017

Abstract

Emerging studies suggest that seaweeds contain phytohormones; however, their chemical entities, biosynthetic pathways, signal transduction mechanisms, and physiological roles are poorly understood. Until recently, it was difficult to conduct comprehensive analysis of phytohormones in seaweeds because of the interfering effects of cellular constituents on fine quantification. In this review, we discuss the details of the latest method allowing simultaneous profiling of multiple phytohormones in red seaweeds, while avoiding the effects of cellular factors. Recent studies have confirmed the presence of indole-3-acetic acid (IAA), N6-(Δ2-isopentenyl)adenine (iP), (+)-abscisic acid (ABA), and salicylic acid, but not of gibberellins and jasmonate, in Pyropia yezoensis and Bangia fuscopurpurea. In addition, an in silico genome-wide homology search indicated that red seaweeds synthesize iP and ABA via pathways similar to those in terrestrial plants, although genes homologous to those involved in IAA biosynthesis in terrestrial plants were not found, suggesting the epiphytic origin of IAA. It is noteworthy that these seaweeds also lack homologues of known factors involved in the perception and signal transduction of IAA, iP, and ABA. Thus, the modes of action of these phytohormones in red seaweeds are unexpectedly dissimilar to those in terrestrial plants.

About the authors

Izumi C. Mori

Izumi C. Mori obtained his PhD from Nagoya University in 1998. He established the LC–MS equipment in the Institute of Plant Science and Resources, Okayama University, several years ago. His research focuses on phytohormone signaling of stomata.

Yoko Ikeda

Yoko Ikeda got her PhD at Kyoto University in 2007. Her main research interests are plant epigenetic mechanisms in reproduction and environmental response. She also began to work on plant hormone research at Okayama University in 2013.

Takakazu Matsuura

Takakazu Matsuura started to work as technical staff in Institute of Plant Science and Resources, Okayama University, at 1991. He is experienced in LC-MS analysis and research on seed dormancy in wheat.

Takashi Hirayama

Takashi Hirayama obtained his PhD from Kyoto University in 1992. He has been studying plant hormone signaling mechanisms by mainly applying molecular genetic approaches. His current interest is focused on understanding of how plants integrate various physiological and environmental information and choose the best response.

Koji Mikami

Koji Mikami obtained his PhD from Hokkaido University in 1990. His research currently focuses on regulatory machineries of life-cycle, development and abiotic stress responses in seaweeds to understand how multicellular marine organisms acclimate to environmental stress and acquire stress tolerance for supporting their correct developmental programs under strict stress conditions.

Acknowledgments

The authors are grateful for support received from the Joint Research Program at the Institute of Plant Science and Resources, Okayama University, and the Japan Advanced Plant Science Network. This work was supported in part by a KAKENHI grant-in-aid for the support of scientific research (no. 15H0453905) and the Ohara Foundation for Agricultural Research.

References

Abel, S., P.W. Oeller and A. Theologis. 1994. Early auxin-induced genes encode short-lived nuclear proteins. Proc. Natl. Acad. Sci. USA 91: 326–330.10.1073/pnas.91.1.326Search in Google Scholar

Abel, S., M.D. Nguyen and A. Theologis. 1995. The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J. Mol. Biol. 251: 533–549.10.1006/jmbi.1995.0454Search in Google Scholar

Alcazar, R., T. Altabella, F. Marco, C. Bortolotti, M. Reymond, C. Koncz, P. Carrasco and A.F. Tiburcio. 2010. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231: 1237–1249.10.1007/s00425-010-1130-0Search in Google Scholar

Amin, S.A., L.R. Hmelo, H.M. van Tol, B.P. Durham, L.T. Carlson, K.R. Heal, R.L. Morales, C.T. Berthiaume, M.S. Parker, B. Djunaedi, A.E. Ingalls, M.R. Parsek, M.A. Moran and E.V. Armbrust. 2015. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522: 98–101.10.1038/nature14488Search in Google Scholar

Banerjee, S. and S. Mazumdar. 2012. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int. J. Anal. Chem. 2012: 282574.10.1155/2012/282574Search in Google Scholar

Barber, M., R.S. Bordoli, G.J. Elliott, R.D. Sedgwick and A.N. Tyler. 1982. Fast atom bombardment mass spectrometry. Ana. Chem. 58: 2949–2954.Search in Google Scholar

Basu, S., H. Sun, L. Brian, R.L. Quatrano and G.K. Muday. 2002. Early embryo development in Fucus distichus is auxin sensitive. Plant Physiol. 130: 292–302.10.1104/pp.004747Search in Google Scholar

Bennett, M.J., A. Marchant, H.G. Green, S.T. May, S.P. Ward, P.A. Millner, A.R. Walker, B. Schulz and K.A. Feldmann. 1996. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273: 948–950.10.1126/science.273.5277.948Search in Google Scholar

Blakey, C.R. and M.L. Vestal. 1983. Thermospray interface for liquid chromatography/mass spectrometry. Anal. Chem. 55: 750–754.10.1021/ac00255a036Search in Google Scholar

Blechschmidt, S., U. Castel, P. Gaskin, P. Hedden, J.E. Graebe and J. MacMillan. 1984. GC/MS analysis of the plant hormones in seeds of Cucubita maxima. Phytochemistry 23: 553–558.10.1016/S0031-9422(00)80379-9Search in Google Scholar

Bruins, A.P., R.R. Covey and J.D. Henion. 1987. Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal. Chem. 59: 2642–246.10.1021/ac00149a003Search in Google Scholar

Cantwell, F.F. and M. Losier. 2002. Liquid–liquid extraction. In: (D. Barcelo ed.) Sampling and sample preparation for field and laboratory. Comprehensive analytical chemistry. Elsevier. Vol. 37. pp. 297–340.10.1016/S0166-526X(02)80048-4Search in Google Scholar

Caprioli, R.M. and T. Fan. 1986. Continuous-flow sample probe for fast arom bombardment mass spectrometry. Anal Chem. 58: 2949–2954.10.1021/ac00127a012Search in Google Scholar PubMed

Carreno-Lopez, R. N. Campos-REalis, C. Elmerich and B.E. Baca. 2000. Physiological evidence for differently regulated tryptophan-dependent pathways for indole–3–acetic acid synthesis in Azopirillum brasilense. Mol. Gen. Genet. 264: 521–530.10.1007/s004380000340Search in Google Scholar PubMed

Chan, C.X., N.A. Blouin, Y. Zhuang, S. Zäuner, S.E. Prochnik, E. Lindquist, S. Lin, C. Benning, M. Lohr, C. Yarish, E. Gantt, A.R. Grossman, S. Lu, K. Müller, J. Stiller, S.H. Brawley and D. Bhattacharya. 2012a. Porphyra (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. J Phycol. 48: 1328–1342.10.1111/j.1529-8817.2012.01229.xSearch in Google Scholar PubMed

Chan, C.X., S. Zäuner, G.L. Wheeler, A.R. Grossman, S.E. Prochnik, N.A. Blouin, Y. Zhuang, C. Benning, G.M. Berg, C. Yarish, R.L. Eriksen, A.S. Klein, S. Lin, I. Levine, S.H. Brawley and D. Bhattacharya. 2012b. Analysis of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems. Plant Physiol. 158: 2001–2012.10.1104/pp.112.193896Search in Google Scholar PubMed PubMed Central

Chen, K.H., A.N. Miller, G.W. Patterson and J.D. Cohen. 1988. A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol. 86: 822–825.10.1104/pp.86.3.822Search in Google Scholar PubMed PubMed Central

Chiwocha, S.D.S., S.R. Abrams, S.J. Ambrose, A.J. Cutler, M. Loewen, A.R.S. Ross and A.R. Kermode. 2003. A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J. 35: 405–417.10.1046/j.1365-313X.2003.01800.xSearch in Google Scholar PubMed

Cock, J.M., L. Sterck, P. Rouzé, D. Scornet, A.E. Allen, G. Amoutzias, V. Anthouard, F. Artiguenave, J.M. Aury, J.H. Badger, B. Beszteri, K. Billiau, E. Bonnet, J.H. Bothwell, C. Bowler, C. Boyen, C. Brownlee, C.J. Carrano, B. Charrier, G.Y. Cho, S.M. Coelho, J. Collén, E. Corre, C. Da Silva, L. Delage, N. Delaroque, S.M. Dittami, S. Doulbeau, M. Elias, G. Farnham, C. M. Gachon, B. Gschloessl, S. S. Heesch, K. Jabbari, C. Jubin, H. Kawai, K. Kimura, B. Kloareg, F.C. Küpper, D. Lang, A. Le Bail, C. Leblanc, P. Lerouge, M. Lohr, P.J. Lopez, C. Martens, F. Maumus, G. Michel, D. Miranda-Saavedra, J. Morales, H. Moreau, T. Motomura, C. Nagasato, C.A. Napoli, D.R. Nelson, P. Nyvall-Collén, A.F. Peters, C. Pommier, P. Potin, J. Poulain, H. Quesneville, B. Read, S.A. Rensing, A. Ritter, S. Rousvoal, M. Samanta, G. Samson, D.C. Schroeder, B. Ségurens, M. Strittmatter, T. Tonon, J.W. Tregear, K. Valentin, P. von Dassow, T. Yamagishi, Y. Van de Peer and P. Wincker. 2010. The Ectocarpus genome and the independent evolution of multicellularity in the brown algae. Nature 465: 617–621.10.1038/nature09016Search in Google Scholar PubMed

Collén, J., B. Porcel, W. Carré, S.G. Ball, C. Chaparro, T. Tonon, T. Barbeyron, G. Michel, B. Noel, K. Valentin, M. Elias, F. Artiguenave, A. Arun, J.M. Aury, J.F. Barbosa-Neto, J.H. Bothwell, F.Y. Bouget, L. Brillet, F. Cabello-Hurtado, S. Capella-Gutiérrez, B. Charrier, L. Cladière, J.M. Cock, S.M. Coelho, C. Colleoni, M. Czjzek, C. Da Silva, L. Delage, F. Denoeud, P. Deschamps, S.M. Dittami, T. Gabaldón, C.M. Gachon, A. Groisillier, C. Hervé, K. Jabbari, M. Katinka, B. Kloareg, N. Kowalczyk, K. Labadie, C. Leblanc, P.J. Lopez, D.H. McLachlan, L. Meslet-Cladiere, A. Moustafa, Z. Nehr, P. Nyvall-Collén, O. Panaud, F. Partensky, J. Poulain, S.A. Rensing, S. Rousvoal, G. Samson, A. Symeonidi, J. Weissenbach, A. Zambounis, P. Wincker and C. Boyen. 2013. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc. Natl. Acad. Sci. USA 110: 5247–5252.10.1073/pnas.1221259110Search in Google Scholar PubMed PubMed Central

Crozier, A., K. Loferski, J.B. Zaerr and R.O. Morris. 1980. Analysis of picogram quantities of indole-3-acetic acid by high performance liquid chromatography-fluorescence procedures. Planta 150: 366–370.10.1007/BF00390171Search in Google Scholar PubMed

Cutler, S.R., P.L. Rodriguez, R.R. Finkelstein and S.R. Abrams. 2010. Abscisic acid: emergence of a core signaling network. Ann. Rev. Plant Biol. 61: 651–679.10.1146/annurev-arplant-042809-112122Search in Google Scholar PubMed

De Meyer, G. and M. Höfte. 1997. Salicylic acid produced by the Rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathol. 87: 588–593.10.1094/PHYTO.1997.87.6.588Search in Google Scholar PubMed

De Smet, I., U. Voß, S. Lau, M. Wilson, N. Shao, R.E. Timme, R. Swarup, I. Kerr, C. Hodgman, R. Bock, M. Bennett, G. Jürgens and T. Beeckman. 2011. Unraveling the evolution of auxin signaling. Plant Physiol. 155: 209–221.10.1104/pp.110.168161Search in Google Scholar PubMed PubMed Central

Ding, J., L.J. Mao, B.F. Yuan and Y.Q. Feng. 2013. A selective retreatment method for determination of endogenous active brassinosteroids in plant tissues: double layered solid phase extraction combined with boronate affinity polymer monolith microextraction. Plant Methods 9: 13.10.1186/1746-4811-9-13Search in Google Scholar PubMed PubMed Central

Dharmasiri, N., S. Dharmasiri and M. Estelle. 2005. The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445.10.1038/nature03543Search in Google Scholar PubMed

Dodds, S.C., O. Garrod and S.A. Simpson. 1956. Endocrinology (The hormones). Ann. Rev. Med. 7: 41–88.10.1146/annurev.me.07.020156.000353Search in Google Scholar PubMed

Egan, S., T. Harder, C. Burke, P. Steinberg, S. Kjelleberg and T. Thomas. 2013. The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol. Review 37: 462–476.10.1111/1574-6976.12011Search in Google Scholar PubMed

Fenselau, C. and R.J. Cotter. 1987. Chemical aspects of fast atom bombardment. Chem. Rev. 87: 501–512.10.1021/cr00079a002Search in Google Scholar

Forcat, S., M.H. Bennett, J.W. Mansfield and M.R. Grant. 2008. A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress. Plant Methods 4: 16.10.1186/1746-4811-4-16Search in Google Scholar PubMed PubMed Central

Fries, L. 1975. Some observations on the morphology of Enteromorpha linza (L.) J. Ag. and Enteromorpha compressa (L.) Grev. in axenic culture. Bot. Mar. 18: 251–253.Search in Google Scholar

Galston, A.W. and R.K. Sawhney. 1990. Polyamines in plant physiology. Plant Physiol. 94: 406–410.10.1104/pp.94.2.406Search in Google Scholar PubMed PubMed Central

Gälweiler, L., C. Guan, A. Müller, E. Wisman, K. Mendgen, A. Yephremov and K. Palme. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282: 2226–2230.10.1126/science.282.5397.2226Search in Google Scholar PubMed

Garcia-Jimenez, P., O. Brito-Romano and R.R. Robaina. 2013. Production of volatiles by the red seaweed Gelidium arbuscula (Rhodophyta): emission of ethylene and dimethyl sulfide. J. Phycol. 49: 661–669.10.1111/jpy.12083Search in Google Scholar PubMed

Gergov, M., T. Nenoen, I. Ojanpera and R.A. Ketola. 2015. Compensation of matrix effects in a standard addition method for metformin in postmortem blood using liquid chromatography–electrospray–tandem mass spectrometry. J. Anal. Toxicol. 39: 359–364.10.1093/jat/bkv020Search in Google Scholar PubMed

Grueneberg, J., A.H. Engelen, R. Costa and T. Wichard. 2016. Macroalgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater. PLoS ONE 11: e0146307.10.1371/journal.pone.0146307Search in Google Scholar PubMed PubMed Central

Guilfoyle, T.J., T. Ulmasov and G. Hagen. 1998. The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol. Life Sci. 54: 619–627.10.1007/s000180050190Search in Google Scholar PubMed

Hayashi, K., K. Horie, Y. Hiwatashi, H. Kawaide, S. Yamaguchi, A. Handa, T. Nakashima, M. Nakajima, L.M. Mander, H. Yamane, M. Hasebe, H. Nozaki. 2010. Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. Plant Physiol. 153: 1085–1097.10.1104/pp.110.157909Search in Google Scholar PubMed PubMed Central

Hedden, P. 1993. Modern methods for the quantitative analysis of plant hormones. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 107–129.10.1146/annurev.pp.44.060193.000543Search in Google Scholar

Hisano, H., T. Matsuura, I.C. Mori, M. Yamane and K. Sato. 2016. Endogenous hormone levels affect the regeneration ability of callus derived from different organs in barley. Plant Physiol. Biochem. 99: 66–72.10.1016/j.plaphy.2015.12.005Search in Google Scholar PubMed

Iehisa, J.C.M., T. Matsuura, I.C. Mori and S. Takumi. 2013. Identification of quantitative trait locus for abscisic acid responsiveness on chromosome 5A and association with dehydration tolerance in common wheat seedlings. J. Plant Physiol. 171: 25–34.10.1016/j.jplph.2013.10.001Search in Google Scholar PubMed

Iehisa, J.C.M., T. Matsuura, I.C. Mori, H. Yokota, F. Kobayashi and S. Takumi. 2014. Identification of quantitative trait loci for abscisic acid responsiveness in the D-genome of hexaploid wheat. J. Plant Physiol. 171: 830–841.10.1016/j.jplph.2014.02.003Search in Google Scholar PubMed

Inoue, T., M. Higuchi, Y. Hashimoto, M. Seki, M. Kobayashi, T. Kato, S. Tabata, K. Shinozaki and T. Kakimoto. 2001. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409: 1060–1063.10.1038/35059117Search in Google Scholar PubMed

Jaillais, Y. and J. Chory. 2010. Unraveling the paradoxes of plant hormone signaling integration. Nat. Struct. Mol. Biol. 17: 642–645.10.1038/nsmb0610-642Search in Google Scholar PubMed PubMed Central

Joint, I., K. Tait and G. Wheeler. 2007. Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. Philos. Trans. R. Soc, Lond. B Biol. Sci. 362: 1223–1233.10.1098/rstb.2007.2047Search in Google Scholar PubMed PubMed Central

Kamboj, J. S., G. Browning, P.S. Blake, J.D. Quinlan and D.A. Baker. 1999. GC-MS-SIM analysis of abscisic acid and indole-3-acetic acid in shoot bark of apple roostocks. Plant Growth Regul. 28: 21–27.10.1023/A:1006299414481Search in Google Scholar

Kamiya, Y. 2010. Plant hormones: versatile regulators of plant growth and developement. Annu. Rev. Plant Biol. 61. Special Online Compilation.10.1146/annurev.arplant.61.031110.100001Search in Google Scholar

Kanno, Y., Y. Jikumaru, A. Hanada, E. Nambara, S.R. Abrams, Y. Kamiya and M. Seo. 2010. Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol. 51: 1988–2001.10.1093/pcp/pcq158Search in Google Scholar PubMed

Kawakami, N., Y. Miyake and K. Noda. 1997. ABA insensitivity and low ABA levels during seed development of non-dormant wheat mutants. J. Exp. Bot. 48: 1415–1421.10.1093/jxb/48.7.1415Search in Google Scholar

Kende, H. and J.A.D. Zeevaart. 1997. The five “classical” plant hormones. Plant Cell 9: 1197–1210.10.1105/tpc.9.7.1197Search in Google Scholar PubMed PubMed Central

Klingler, J.P., G. Batelli and J.K. Zhu. 2010. ABA receptors: the START of a new paradigm in phytohormone signalling. J. Exp. Bot. 61: 3199–3210.10.1093/jxb/erq151Search in Google Scholar PubMed PubMed Central

Kojima, M., T. Kamada-Nobusada, H. Komatsu, K. Takei, T. Kuroha, M. Mizutani, M. Ashikari, M. Ueguchi-Tanaka, M. Matsuoka, K. Suzuki and H. Sakakibara. 2009. Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol. 50: 1201–1214.10.1093/pcp/pcp057Search in Google Scholar PubMed PubMed Central

Lau, S., N. Shao, R. Bock, G. Jürgens and I. De Smet. 2009. Auxin signaling in algal lineages: fact or myth? Trends Plant Sci. 14: 182–188.10.1016/j.tplants.2009.01.004Search in Google Scholar PubMed

Le Bail, A., B. Billoud, N. Kowalczyk, M. Kowalczyk, M. Gicquel, S. Le Panse, S. Stewart, D. Scornet, J.M. Cock, K. Ljung and B. Charrier. 2010. Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiol. 153: 128–144.10.1104/pp.109.149708Search in Google Scholar PubMed PubMed Central

Lemiere, F. 2001. Interfaces for LC–MS. Guide to LC–MS. LC-GC Europe. pp. 29–35.Search in Google Scholar

Liu, X., K. Bogaert, A.H. Englen, F. Leliaert, M.Y. Roleda and O. De Clerck. 2017. Seaweed reproductive biology: environmental and genetic controls. Bot. Mar. 60: 89–108.10.1515/bot-2016-0091Search in Google Scholar

Lu, Y., Y. Sasaki, X.W. Li, I.C. Mori, T. Matsuura, T. Hirayama, T. Sato and J. Yamaguchi. 2015. ABI1 regulates carbon/nitrogen-nutrient signal transduction independent of ABA biosynthesis and canonical ABA signaling pathways in Arabidopsis. J. Exp. Bot. 66: 2763–2771.10.1093/jxb/erv086Search in Google Scholar PubMed PubMed Central

Mano, Y. and K. Nemoto. 2012. The pathway of auxin biosynthesis in plants. J. Exp. Bot. 63: 2853–2872.10.1093/jxb/ers091Search in Google Scholar PubMed

Manulis, S., A. Haviv-Chesner, M.T. Brandl, S.E. Lindow and I Barash. 1998. Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia hebicola pv. gypsophilae. Mol. Plant-Microb. Interact. 11: 634–642.10.1094/MPMI.1998.11.7.634Search in Google Scholar PubMed

Marchant, A., J. Kargul, S.T. May, P. Muller, A. Delbarre, C. Perrot-Rechenmann and M.J. Bennett. 1999. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J. 18: 2066–2073.10.1093/emboj/18.8.2066Search in Google Scholar PubMed PubMed Central

Matsubayashi, Y. and Y. Sakagami. 2006. Peptide hormones in Plants. Ann. Rev. Plant Biol. 57: 649–674.10.1146/annurev.arplant.56.032604.144204Search in Google Scholar PubMed

Meuwly, P. and J.P. Metraux. 1993. Ortho-anisic acid as internal standard for the simultaneous quantification of salicylic acid and its putative biosynthetic precursors in cucumber leaves. Anal. Biochem. 214: 500–505.10.1006/abio.1993.1529Search in Google Scholar PubMed

Mikami, K. and M. Hosokawa. 2013. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. Int. J. Mol. Sci. 14: 13763–13781.10.3390/ijms140713763Search in Google Scholar PubMed PubMed Central

Mikami, K., I.C. Mori, T. Matsuura, Y. Ikeda, M. Kojima, H. Sakakibara and T. Hirayama. 2016. Comprehensive quantification and genome survey reveal the presence of novel phytohormone action modes in red seaweeds. J. Appl. Phycol. 28: 2539–2548.10.1007/s10811-015-0759-2Search in Google Scholar

Miyazaki, S., H. Toyoshima, M. Natsume, M. Nakajima and H. Kawaide. 2014. Blue-light irradiation up-regulates the ent-kaurene synthase gene and affects the avoidance response of protonemal growth in Physcomitrella patens. Planta 240: 117–124.10.1007/s00425-014-2068-4Search in Google Scholar PubMed

Miyazaki, S., M. Nakajima, M. and H. Kawaide. 2015. Hormonal diterpenoids derived from ent-kaurenoic acid are involved in the blue-light avoidance response of Physcomitrella patens. Plant Signal. Behave. 10: e989046.10.4161/15592324.2014.989046Search in Google Scholar PubMed PubMed Central

Monroe-Augustus, M., B.K. Zolman and B. Bartel. 2003. IBR5, a dual-specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis. Plant Cell 15: 2979–2991.10.1105/tpc.017046Search in Google Scholar PubMed PubMed Central

Müller, M. and S. Munné-Bosch. 2011. Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Methods 7: 37.10.1186/1746-4811-7-37Search in Google Scholar PubMed PubMed Central

Nakamura, Y., N. Sasaki, M. Kobayashi, N. Ojima, M. Yasuike, Y. Shigenobu, M. Satomi, Y. Fukuma, K. Shiwaku, A. Tsujimoto, T. Kobayashi, I. Nakayama, F. Ito, K. Nakajima, M. Sano, T. Wada, S. Kuhara, K. Inouye, T. Gojobori and K. Ikeo. 2013. The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS One 8: e57122.10.1371/journal.pone.0057122Search in Google Scholar PubMed PubMed Central

Nambara, E. and A. Marion-Poll. 2005. Abscisic acid biosynthesis and catabolism. Ann. Rev. Plant Biol. 56: 165–185.10.1146/annurev.arplant.56.032604.144046Search in Google Scholar PubMed

Nishimura, C., Y. Ohashi, S. Sato, T. Kato, S. Tabata and C. Ueguchi. 2004. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16: 1365–1377.10.1105/tpc.021477Search in Google Scholar PubMed PubMed Central

Okada, K., J. Ueda, M.K. Komaki, C.J. Bell and Y. Shimura. 1991. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3: 677–684.10.2307/3869249Search in Google Scholar

Ostrowski, M. and A. Jakubowska. 2014. UDP-glycosyltransferases of plant hormones. Adv. Cell Biol. 4: 43–60.10.2478/acb-2014-0003Search in Google Scholar

Patten, C.L. and B.R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3785–3801.10.1128/AEM.68.8.3795-3801.2002Search in Google Scholar

Pichersky, E. and J. Gershenzon. 2002. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5: 237–243.10.1016/S1369-5266(02)00251-0Search in Google Scholar

Ponce De León, I., E.A. Schmelz, C. Gaggero, A. Castro, A. Álvarez and M. Montesano. 2012. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defense signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon Botrytis cinerea infection. Mol. Plant Pathol. 13: 960–974.10.1111/j.1364-3703.2012.00806.xSearch in Google Scholar PubMed PubMed Central

Press, C.M., M. Wilson, S. Tuzun and J.W. Kloepper. 1997. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant Microbe In. 6: 761–768.10.1094/MPMI.1997.10.6.761Search in Google Scholar

Prinsen, E., A. Costacurta, K. Michiels, J. Vanderleyden and H. Van Onckelen. 1993. Azospirillum brasilense indole–3–acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol. Plant-Microb. Interact. 6: 609–615.10.1094/MPMI-6-609Search in Google Scholar

Rikiishi, K., T. Matsuura, Y. Ikeda and M. Maekawa. 2015. Light inhibition of shoot regeneration is regulated by endogenous abscisic acid level in calli derived from immature barley embryos. PLoS One 10: e0145242.10.1371/journal.pone.0145242Search in Google Scholar PubMed PubMed Central

Sakakibara, H. 2006. Cytokinins: activity, biosynthesis, and translocation. Ann. Rev. Plant Biol. 57: 431–449.10.1146/annurev.arplant.57.032905.105231Search in Google Scholar PubMed

Schäfer, M., C. Brütting, I.T. Baldwin and M. Kallenbach. 2016. High-throughput quantification of more than 100 primary- and secondary-metabolites, and phytohormones by a single solid-phase extraction based sample preparation with analysis by UHPLC-HESI-MS/MS. Plant Methods 12: 30.10.1186/s13007-016-0130-xSearch in Google Scholar PubMed PubMed Central

Scott, I. M., G.C. Martin, R. Horgan and J.K. Heald. 1982. Mass spectrometric measurement of zeatin glycoside levels in Vinca rosea L. crown gall tissue. Planta 154: 273–276.10.1007/BF00387874Search in Google Scholar PubMed

Seo, M., Y. Jikumaru and Y. Kamiya. 2011. Profiling of hormones and related metabolites in seed dormancy and germination studies. In: (A.R. Kermode Ed.) Seed dormancy methods and protocols. Methods in Molecular Biology 773, Springer NewYork Dordrecht Heidelberg London. pp. 99–111.10.1007/978-1-61779-231-1_7Search in Google Scholar PubMed

Singh, R.P. and C.R. Reddy. 2014. Seaweed-microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiol Ecol. 88: 213–230.10.1111/1574-6941.12297Search in Google Scholar PubMed

Singh, R.P., A.J. Bijo, R.S. Baghel, C.R. Reddy and B. Jha. 2011a. Role of bacterial isolates in enhancing the bud induction in the industrially important red alga Gracilaria dura. FEMS Microbiol. Ecol. 76: 381–392.10.1111/j.1574-6941.2011.01057.xSearch in Google Scholar PubMed

Singh, R.P., V.A. Mantri, C.R.K. Reddy and B. Jha. 2011b. Isolation of seaweed-associated bacteria and their morhpogenesis-inducing capability in axenic culture of the green alga Ulva fasciata. Aquat. Biol. 12: 13–21.10.3354/ab00312Search in Google Scholar

Spoerner, M., T. Wichard, T. Bachhuber, J. Stratmann and W. Oertel. 2012. Growth and thallus morphogenesis of Ulva mutabilis (Chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. J. Phycol. 48: 1433–1447.10.1111/j.1529-8817.2012.01231.xSearch in Google Scholar PubMed

Steinborner, S. and J. Henion. 1999. Liquid-liquid extraction in the 96-well plate format with SRM LC/MS quantitative determination of methotrexate and its major metabolite in human plasma. Anal. Chem. 71: 2340–2345.10.1021/ac981294ySearch in Google Scholar PubMed

Stiller, J.W., J. Perry, L.A. Rymarquis, M. Accerbi, P.J. Green, S. Prochnik, E. Lindquist, C.X. Chan, C. Yarish, S. Lin, Y. Zhuang, N.A. Blouin and S.H. Brawley. 2012. Major developmental regulators and their expression in two closely related species of Porphyra (Rhodophyta). J. Phycol. 48: 883–896.10.1111/j.1529-8817.2012.01138.xSearch in Google Scholar PubMed

Stout, J.S. and A.R. DaCunha. 1985. Simplified moving-belt interface for liquid chromatography/mass spectrometry. Anal. Chem. 57: 1783–1786.10.1021/ac00285a068Search in Google Scholar

Stumpe, M., C. Göbel, B. Faltin, A.K. Beike, B. Hause, K. Himmelsbach, J. Bode, R. Kramell, C. Wasternack, W. Frank, R. Reski and I. Feussner. 2010. The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol. 188: 740–749.10.1111/j.1469-8137.2010.03406.xSearch in Google Scholar PubMed

Suzuki, T., T. Matsuura, N. Kawakami and K. Noda. 2000. Accumulation and leakage of abscisic acid during embryo development and seed dormancy in wheat. Plant Growth Regul. 30: 253–260.10.1023/A:1006320614530Search in Google Scholar

Takagi, H., Y. Ishiga, S. Watanabe, T. Konishi, M. Egusa, N. Akiyoshi, T. Matsuura, I.C. Mori, T. Hirayama, H. Kaminaka, H. Shimada and A. Sakamoto. 2016. Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. J. Exp Bot. 67: 2519–2532.10.1093/jxb/erw071Search in Google Scholar PubMed PubMed Central

Takezawa, D., K. Komatsu and Y. Sakata. 2011. ABA in bryophytes: how a universal growth regulator in life become a plant hormone? J. Plant Res. 124: 437–453.10.1007/s10265-011-0410-5Search in Google Scholar PubMed

Tate, J. and G. Ward. 2004. Interference in immunoassay. Clin. Biochem. Rev. 25: 105–120.Search in Google Scholar

Tivendale, N.D., J.J. Ross and J.D. Cohen. 2014. The shifting paradigms of auxin biosyntheis. Trends Plant Sci. 19: 44–51.10.1016/j.tplants.2013.09.012Search in Google Scholar PubMed

To, J.P. and J.J. Kieber. 2008. Cytokinin signaling: two-components and more. Trends Plant Sci. 13: 85–92.10.1016/j.tplants.2007.11.005Search in Google Scholar PubMed

Tokuda, M., Y. Jikumaru, K. Matsukura, Y. Takebayashi, S. Kumashiro, M. Matsumura and Y. Kamiya. 2013. Phytohormones related to host plant manipulation by a fall-inducing leafhopper. PLoS One 8: e62350.10.1371/journal.pone.0062350Search in Google Scholar PubMed PubMed Central

Tsukahara, K., H. Sawada, Y. Kohno, T. Matsuura, I.C. Mori, T. Terao, M. Ioki and M. Tamaoki. 2015. Ozone-induced rice grain yield loss is triggered via a change in panicle morphology that is controlled by AERRANT PANICLE ORGANIZATION 1 gene. PLoS One 10: e0123308.10.1371/journal.pone.0123308Search in Google Scholar PubMed PubMed Central

Turnaev, I., K.V. Gunbin and D.A. Afonnikov. 2015. Plant auxin biosynthesis did not originate in carophytes. Trends Plant Sci. 20: 463–465.10.1016/j.tplants.2015.06.004Search in Google Scholar PubMed

Turowski, M., N. Yamakawa, J. Meller, K. Kimata, T. Ikegami, K. Hosoya, N. Tanaka and E.R. Thornton. 2003. Deuterium isotoep effects on hydrophobic interactions: the importance of dispersion interactions in the hydrophobic phase. J. Am. Chem. Soc. 125: 13836–13849.10.1021/ja036006gSearch in Google Scholar PubMed

Umehara, M., A. Hanada, S. Yoshida, K. Akiyama, T. Arite, N. Takeda-Kamiya, H. Magome, Y. Kamiya, K. Shirasu, K. Yoneyama, J. Kyozuka and S. Yamaguchi. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455: 195–200.10.1038/nature07272Search in Google Scholar PubMed

Ulmasov, T., G. Hagen and T.J. Guilfoyle. 1997. ARF1, a transcription factor that binds to auxin response elements. Science 276: 1865–1868.10.1126/science.276.5320.1865Search in Google Scholar PubMed

Van Meulebroek, L., J. Vanden Bussche, K. Steppe and L. Vanhaecke. 2012. Ultra-high performance liquid chromatography coupled to high resolution Orbitrap mass spectrometry for metabolomic profiling of the endogenous phytohormonal status of the tomato plant. J. Chromatogr. A 1260: 67–80.10.1016/j.chroma.2012.08.047Search in Google Scholar PubMed

Van Meulebroek, L. J. Vanden Bussche, N., De Clercq and L. Vanhaecke. 2014. Metabolomics approach to unravel the regulating role of phytohormones towards carotenoid metabolism in tomato fruit. Anal. Bioanal. Chem. 406: 2613–2626.10.1007/s11306-014-0728-9Search in Google Scholar

Vestal, M.L. 1984. High-performance liquid chromatography-mass spectrometry. Science 226: 275–281.10.1126/science.6385251Search in Google Scholar PubMed

Wang, C., Y. Liu, S.-S. Li and G.-Z. Han. 2014a. Origin of plant auxin biosynthesis in charophyte algae. Trends Plant Sci. 19: 741–743.10.1016/j.tplants.2014.10.004Search in Google Scholar PubMed

Wang, X., P. Zhao, X. Liu, J. Chen, J. Xu, H. Chen and X. Yan. 2014b. Quantitative profiling method for phytohormones and betaines in algae by liquid chromatography electrospray ionization tandem mass spectrometry. Biomed. Chromatogr. 28: 275–280.10.1002/bmc.3018Search in Google Scholar PubMed

Wang, C., S.-S. Li and G.-Z. Han. 2016. Plant auxin biosynthesis did not originate in charophytes. Front. Plant Sci. 7: 158.10.3389/fpls.2016.00158Search in Google Scholar PubMed PubMed Central

Watanabe, T. and N. Kondo. 1976. Ethylene evolution in marine algae and a proteinaceous inhibitor of ethylene biosysnthesis from red alga. Plant Cell Physiol. 17: 1159–1166.Search in Google Scholar

Weiler, E.W. 1982. An enzyme-immunoassay for cis-(+) abscisic acid. Physiol. Plant 54: 510–514.10.1111/j.1399-3054.1982.tb00718.xSearch in Google Scholar

Westfall, C.S., A.M. Muehler and J.M. Jez. 2013. Enzyme action in the regulation of plant hormone responses. J. Biol. Chem. 288: 19304–19311.10.1074/jbc.R113.475160Search in Google Scholar PubMed PubMed Central

Wichard, T. 2015. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Front. Plant Sci. 6: 86.10.3389/fpls.2015.00086Search in Google Scholar PubMed PubMed Central

Wieling, J. 2002. LC–MS–MS experiences with internal standards. Chromatographa 55: S107–S113.10.1007/BF02493365Search in Google Scholar

Wu, Y., D. Zhang, J.Y. Chu, P. Boyle, Y. Wang, I.D. Brindle, V. De Luca and C. Despres. 2012. The Arabidopsis NPR1 proteinis a receptor for the plant defense hormone salicylic acid. Cell Rep. 1: 639–647.10.1016/j.celrep.2012.05.008Search in Google Scholar PubMed

Yamamoto, Y., J. Ohshika, T. Takahashi, K. Ishizaki, T. Kohchi, M. Matusuura and K. Takahashi. 2015. Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha. Phytochemistry. 116: 48–56.10.1016/j.phytochem.2015.03.008Search in Google Scholar PubMed

Yokoya, N.S., W.A. Stirk, J. van Staden, O. Novák, V. Turečková, A. Pěnčík and M. Strnad. 2010. Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil. J. Phycol. 46: 1198–1205.10.1111/j.1529-8817.2010.00898.xSearch in Google Scholar

Yoshimoto, K., Y. Jikumaru, Y. Kamiya, M. Kusano, C. Consonni, R. Panstruga, Y. Ohsumo and K. Shirasu. 2009. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21: 2914–2927.10.1105/tpc.109.068635Search in Google Scholar PubMed PubMed Central

Yue, J., X. Hu and J. Huang. 2014. Origin of plant auxin biosynthesis. Trends Plant Sci. 19: 764–770.10.1016/j.tplants.2014.07.004Search in Google Scholar PubMed

Zhao, Y. 2014. Auxin biosynthesis. Abaridopsis Book. 12: e0173.10.1199/tab.0173Search in Google Scholar PubMed PubMed Central

Received: 2016-6-20
Accepted: 2017-2-23
Published Online: 2017-3-30
Published in Print: 2017-4-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Editorial
  4. Phycomorph: macroalgal development and morphogenesis
  5. Reproduction
  6. Seaweed reproductive biology: environmental and genetic controls
  7. Interactions of daylength, temperature and nutrients affect thresholds for life stage transitions in the kelp Laminaria digitata (Phaeophyceae)
  8. Cell structure and microtubule organisation during gametogenesis of Ulva mutabilis Føyn (Chlorophyta)
  9. Impaired growth and reproductive capacity in marine rockweeds following prolonged environmental contaminant exposure
  10. Delayed growth and cell division in embryos of Fucus vesiculosus after parental exposure to polychlorinated biphenyls and metals
  11. Development and morphogenesis
  12. Phytohormones in red seaweeds: a technical review of methods for analysis and a consideration of genomic data
  13. Morphological changes with depth in the calcareous brown alga Padina pavonica
  14. Studying mesoalgal structures: a non-destructive approach based on confocal laser scanning microscopy
  15. Morphogenesis of Ulva mutabilis (Chlorophyta) induced by Maribacter species (Bacteroidetes, Flavobacteriaceae)
  16. Techniques and applications
  17. Biotechnological applications of the red alga Furcellaria lumbricalis and its cultivation potential in the Baltic Sea
  18. Carbohydrate-based phenotyping of the green macroalga Ulva fasciata using near-infrared spectrometry: potential implications for marine biorefinery
  19. Texture analysis of Laminaria digitata (Phaeophyceae) thallus reveals trade-off between tissue tensile strength and toughness along lamina
Downloaded on 30.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bot-2016-0056/html
Scroll to top button