Abstract
Objectives
Together with the corneoscleral shell the intraocular pressure maintains the shape of the human eyeball and thus ensures both mechanical and optical integrity, whereby the relationship between the intraocular volume and pressure is described by the so-called ocular compliance. The compliance of the human eye is of significance in situations where a variation of the intraocular volume leads to a change in pressure or vice versa, as this is the case in many clinical settings. In order to provide a framework and set-up for experimental investigations and testing this paper presents a bionic inspired approach to simulate the ocular compliance by using elastomeric membranes – based on physiological behaviour.
Methods
For parameter studies and for validation, the numerical analysis with hyperelastic material models shows good agreement with reported compliance curves. In addition, the compliance curves of six different elastomeric membranes have been measured.
Results
The results show that the characteristics of the compliance curve of the human eye can be modeled within a 5 % range using the proposed elastomeric membranes.
Conclusions
A set-up for experimental investigations is presented that allows the simulation of the compliance curve of the human eye without simplifications in terms of shape, geometry, and deformation behaviour.
-
Research funding: None declared.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: Authors state no conflict of interest.
-
Informed consent: Informed consent was obtained from all individuals included in this study.
-
Ethical approval: The local Institutional Review Board deemed the study exempt from review.
References
1. Zhu, J, Zhang, E, Del Rio-Tsonis, K. Eye anatomy. eLS. Chichester: John Wiley & Sons; 2012.10.1002/9780470015902.a0000108.pub2Suche in Google Scholar
2. Bailey, A. Structure, function and ageing of the collagens of the eye. Eye 1987;1:175–83. https://doi.org/10.1038/eye.1987.34.Suche in Google Scholar PubMed
3. Baum, J, Hopewell, J, Lantz, M, Osborne, J, Scott, B, Seltzer, S, et al.. NCRP report no. 130 biological effects and exposure limits for “hot particles”. Bethesda: NCRP; 1999.Suche in Google Scholar
4. Tweedy, J, Ethier, CR. Fluid mechanics of the eye. Annu Rev Fluid Mech 2011;44:347–72.10.1146/annurev-fluid-120710-101058Suche in Google Scholar
5. Robert, Y. Klinik des Augeninnendrucks, 1st ed. Berlin: De Gruyter; 2015.10.1515/9783110421880Suche in Google Scholar
6. Shavell, L. Normal anatomy of the eye in cross section, image ID: GD1MW4. Oxon: Alamy Ltd; 2022.Suche in Google Scholar
7. Schmidt, RF, Thews, G. Physiologie des Menschen, 27th ed. Berlin: Springer; 1997.10.1007/978-3-662-00485-2Suche in Google Scholar
8. Pallikaris, I, Tsilimbaris, MK, Dastiridou, AI. Ocular rigidity, biomechanics and hydrodynamics of the eye, 1st ed. Cham: Springer International Publishing; 2021.10.1007/978-3-030-64422-2Suche in Google Scholar
9. Sherwood, JM, Boazak, EM, Feola, AJ, Parker, K, Ethier, CR, Overby, DR. Measurement of ocular compliance using iPerfusion. Front Bioeng Biotechnol 2019;7:276. https://doi.org/10.3389/fbioe.2019.00276.Suche in Google Scholar PubMed PubMed Central
10. Zacharias, J, Zacharias, S. Volume-based characterization of postocclusion surge. J Cataract Refract Surg 2005;31:1976–82. https://doi.org/10.1016/j.jcrs.2005.03.061.Suche in Google Scholar PubMed
11. Dyk, DW, Miller, KM. Mechanical model of human eye compliance for volumetric occlusion break surge measurements. J Cataract Refract Surg 2018;44:231–6. https://doi.org/10.1016/j.jcrs.2017.10.052.Suche in Google Scholar PubMed
12. Sharif-Kashani, P, Fanney, D, Injev, V. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems. BMC Ophthalmol 2014;14. https://doi.org/10.1186/1471-2415-14-96.Suche in Google Scholar PubMed PubMed Central
13. Nachtigall, W, Wisser, A. Bionics by examples, 1st ed. Cham: Springer International Publishing; 2015.10.1007/978-3-319-05858-0Suche in Google Scholar
14. Selvadurai, APS, Shi, M. Fluid pressure loading of a hyperelastic membrane. Int J Non Linear Mech 2012;47:228–39. https://doi.org/10.1016/j.ijnonlinmec.2011.05.011.Suche in Google Scholar
15. Wagner, M. Lineare und nichtlineare FEM: Eine Einführung mit Anwendungen in der Umformsimulation mit LS-DYNA®, 1st ed. Wiesbaden: Springer Fachmedien; 2017.Suche in Google Scholar
16. Kurowski, P. Engineering analysis with SOLIDWORKS simulation 2021, 1st ed. Mission: SDC Publications; 2021.Suche in Google Scholar
17. Bischoff, M, Burmeister, A, Maute, K, Ramm, E. Schalentragwerke. Spektrum der Wissenschaft 1997;98–102.Suche in Google Scholar
18. Holzapfel, G. Biomechanics of soft tissue. In: The handbook of materials behavior models. Multiphysics behaviors, Chapter 10, Composite media ed. Boston: Academic Press; 2001, vol III:1049–63 pp.Suche in Google Scholar
19. Marino, M. Constitutive modeling of soft tissues. In: Narayan, R, editor. Encyclopedia of biomedical engineering. Amsterdam: Elsevier; 2019.10.1016/B978-0-12-801238-3.99926-4Suche in Google Scholar
20. Capurro, M, Barberis, F. Evaluating the mechanical properties of biomaterials. In: Biomaterials for bone regeneration: novel techniques and applications. Cambridge: Woodhead Publishing; 2014:270–323 pp.10.1533/9780857098104.2.270Suche in Google Scholar
21. Rösler, J, Harders, H, Bäker, M. Mechanisches Verhalten der Werkstoffe, 6th ed. Wiesbaden: Springer Fachmedien; 2019.10.1007/978-3-658-26802-2Suche in Google Scholar
22. Zhao, F. Anisotropic continuum stored energy functional solved by lie group and differential geometry. Adv Pure Math 2018;08:631–51. https://doi.org/10.4236/apm.2018.87037.Suche in Google Scholar
23. Amabili, M. Nonlinear mechanics of shells and plates in composite, soft and biological materials, 1st ed. Cambridge: Cambridge University Press; 2018.10.1017/9781316422892Suche in Google Scholar
24. Su, P, Yang, Y, Xiao, J, Song, Y. Corneal hyper-viscoelastic model: derivations, experiments, and simulations. Acta Bioeng Biomech 2015;17:73–84.Suche in Google Scholar
25. Zare, M, Javadi, M-A, Einollahi, B, Baradaran-Rafii, A-R, Feizi, S, Kiavash, V. Risk factors for posterior capsule rupture and vitreous loss during phacoemulsification. J Ophthalmic Vis Res 2009;4:208–12.Suche in Google Scholar
26. Agarwal, A, Agarwal, A, Jacob, S. Phacoemulsification, 4th ed. New Delhi: Jaypee Brothers Medical Publishers; 2011.10.5005/jp/books/11485Suche in Google Scholar
27. Aumüller, G, Aust, G, Conrad, A, Engele, J, Kirsch, J, Maio, G. Duale Reihe Anatomie, 5th ed. Stuttgart: Thieme; 2020.10.1055/b-007-170976Suche in Google Scholar
28. Baur, E, Osswald, T, Rudolph, N, Saechtling, H. Saechtling Kunststoff Taschenbuch, 31st ed. München: Hanser; 2013.10.3139/9783446437296.fmSuche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review
- Biomechanical testing of osteosynthetic locking plates for proximal humeral shaft fractures – a systematic literature review
- Research Articles
- Instrumented treadmill for run biomechanics analysis: a comparative study
- Computational modelling of the graft-tunnel interaction in single-bundle ACL reconstructed knee
- Biomechanical effects of inclined implant shoulder design in all-on-four treatment concept: a three-dimensional finite element analysis
- Extension of the working time of dental composites due to a new type of white operating lamp
- Modeling the compliance of the human eye with elastic membranes based on a bionic approach
- Region-wise severity analysis of diabetic plantar foot thermograms
- A new method for vital sign detection using FMCW radar based on random body motion cancellation
- Atherosclerosis plaque tissue classification using self-attention-based conditional variational auto-encoder generative adversarial network using OCT plaque image
- A combined impedance compensation strategy applied to external automatic defibrillators
Artikel in diesem Heft
- Frontmatter
- Review
- Biomechanical testing of osteosynthetic locking plates for proximal humeral shaft fractures – a systematic literature review
- Research Articles
- Instrumented treadmill for run biomechanics analysis: a comparative study
- Computational modelling of the graft-tunnel interaction in single-bundle ACL reconstructed knee
- Biomechanical effects of inclined implant shoulder design in all-on-four treatment concept: a three-dimensional finite element analysis
- Extension of the working time of dental composites due to a new type of white operating lamp
- Modeling the compliance of the human eye with elastic membranes based on a bionic approach
- Region-wise severity analysis of diabetic plantar foot thermograms
- A new method for vital sign detection using FMCW radar based on random body motion cancellation
- Atherosclerosis plaque tissue classification using self-attention-based conditional variational auto-encoder generative adversarial network using OCT plaque image
- A combined impedance compensation strategy applied to external automatic defibrillators