Smart piezoelectric biomaterials for tissue engineering and regenerative medicine: a review
-
Aryan Najjari
, S.A. Seyyed Ebrahimi
Abstract
Due to the presence of electric fields and piezoelectricity in various living tissues, piezoelectric materials have been incorporated into biomedical applications especially for tissue regeneration. The piezoelectric scaffolds can perfectly mimic the environment of natural tissues. The ability of scaffolds which have been made from piezoelectric materials in promoting cell proliferation and regeneration of damaged tissues has encouraged researchers in biomedical areas to work on various piezoelectric materials for fabricating tissue engineering scaffolds. In this review article, the way that cells of different tissues like cardio, bone, cartilage, bladder, nerve, skin, tendon, and ligament respond to electric fields and the mechanism of tissue regeneration with the help of piezoelectric effect will be discussed. Furthermore, all of the piezoelectric materials are not suitable for biomedical applications even if they have high piezoelectricity since other properties such as biocompatibility are vital. Seen in this light, the proper piezoelectric materials which are approved for biomedical applications are mentioned. Totally, the present review introduces the recent materials and technologies that have been used for tissue engineering besides the role of electric fields in living tissues.
Funding source: Iran National Science Foundation
Award Identifier / Grant number: 97006113
Acknowledgement
The authors would like to thank the Iran National Science Foundation (INSF) for the financial support of this research project.
-
Research funding: Iran National Science Foundation (INSF), No: 97006113.
-
Author contribution: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: Author state no conflicts of interest.
-
Informed consent: Not applicable.
-
Ethical approval: Not applicable.
References
1. Ribeiro, C, Sencadas, V, Correia, DM, Lanceros-Méndez, S. Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf B Biointerfaces 2015;136:46–55. https://doi.org/10.1016/j.colsurfb.2015.08.043.Suche in Google Scholar PubMed
2. Sulik, GL, Soong, HK, Chang, PCT, Parkinson, WC, Elner, SG, Elner, VM. Effects of steady electric fields on human retinal pigment epithelial cell orientation and migration in culture. Acta Ophthalmol 1992;70:115–22. https://doi.org/10.1111/j.1755-3768.1992.tb02102.x.Suche in Google Scholar PubMed
3. Pu, J, McCaig, CD, Cao, L, Zhao, Z, Segall, JE, Zhao, M. EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. J Cell Sci 2007;120:3395–403. https://doi.org/10.1242/jcs.002774.Suche in Google Scholar PubMed
4. Kohata, K, Itoh, S, Takeda, S, Kanai, M, Yoshioka, T, Suzuki, H, et al.. Enhancement of fracture healing by electrical stimulation in the comminuted intraarticular fracture of distal radius. Bio Med Mater Eng 2013;23:485–93. https://doi.org/10.3233/bme-130774.Suche in Google Scholar
5. Kapat, K, Shubhra, QTH, Zhou, M, Leeuwenburgh, S. Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Adv Funct Mater 2020;30:1909045. https://doi.org/10.1002/adfm.201909045.Suche in Google Scholar
6. Mokhtari, SDF, Azimi, B, Salehi, M, Hashemikia, S. Recent advances of polymer-based piezoelectric composites for biomedical applications. Mech Behav Biomed Mater 2021;122:104669. https://doi.org/10.1016/j.jmbbm.2021.104669.Suche in Google Scholar PubMed
7. Jacob, J, More, N, Kalia, K, Kapusetti, G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm Regen 2018;38:1–11. https://doi.org/10.1186/s41232-018-0059-8.Suche in Google Scholar PubMed PubMed Central
8. Khare, AKDD, Basu, B. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials 2020;258:120280. https://doi.org/10.1016/j.biomaterials.2020.120280.Suche in Google Scholar PubMed
9. Rajabi, AH, Jaffe, M, Arinzeh, TL. Piezoelectric materials for tissue regeneration: a review. Acta Biomater 2015;24:12–23. https://doi.org/10.1016/j.actbio.2015.07.010.Suche in Google Scholar PubMed
10. Gouveia, PJ, Rosa, S, Ricotti, L, Abecasis, B, Almeida, H, Monteiro, L, et al.. Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes. Biomaterials 2017;139:213–28. https://doi.org/10.1016/j.biomaterials.2017.05.048.Suche in Google Scholar PubMed
11. Adadi, N, Yadid, M, Gal, I, Asulin, M, Feiner, R, Edri, R, et al.. Electrospun fibrous PVDF-TrFe scaffolds for cardiac tissue engineering, differentiation, and maturation. Adv. Mater Technol 2020;5:1–11. https://doi.org/10.1002/admt.201900820.Suche in Google Scholar
12. Bringer, LT, Xu, X, Shih, W, Shih, WH, Habas, R, Schauer, CL. An electrospun PVDF-TrFe fiber sensor platform for biological applications. Sensor Actuator Phys 2014;222:293–300. https://doi.org/10.1016/j.sna.2014.11.012.Suche in Google Scholar
13. Ciofani, G, Ricotti, L, Menciassi, A, Mattoli, V. Preparation, characterization and in vitro testing of poly (lactic-co-glycolic) acid/barium titanate nanoparticle composites for enhanced cellular proliferation. Biomed Microdevices 2011;13:255–66. https://doi.org/10.1007/s10544-010-9490-6.Suche in Google Scholar PubMed
14. Liu, Y, Zhang, X, Cao, C, Zhang, Y, Wei, J, Li, Y, et al.. Built-in electric fields dramatically induce enhancement of osseointegration. Adv Funct Mater 2017;27:1–9. https://doi.org/10.1002/adfm.201703771.Suche in Google Scholar
15. More, N, Kapusetti, G. Piezoelectric material – a promising approach for bone and cartilage regeneration. Med Hypotheses 2019;108:10–6. https://doi.org/10.1016/j.mehy.2017.07.021.Suche in Google Scholar PubMed
16. Tandon, B, Blaker, JJ, Cartmell, SH. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater 2018;73:1–20. https://doi.org/10.1016/j.actbio.2018.04.026.Suche in Google Scholar PubMed
17. Aghdam, RM, Shakhesi, S, Najarian, N, Malek Mohammadi, M, Ahmadi Tafti, SH, Mirzadeh, H. Fabrication of a Nanofibrous Scaffold for the In Vitro Culture of Cardiac Progenitor Cells for Myocardial Regeneration. Int J Polym Mater Polym Biomater 2014;63:229–39. https://doi.org/10.1080/00914037.2013.800983.Suche in Google Scholar
18. Hong, Z, Zhang, P, He, C, Qiu, X, Liu, A, Chen, L, et al.. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials 2005;26:6296–304. https://doi.org/10.1016/j.biomaterials.2005.04.018.Suche in Google Scholar PubMed
19. Marino, A, Barsotti, J, De Vito, G, Filippeschi, C. Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation. ACS Appl Mater Interfaces 2015;7:25574–9. https://doi.org/10.1021/acsami.5b08764.Suche in Google Scholar PubMed
20. Yu, P, Ning, C, Zhang, Y, Tan, G. Bone-inspired spatially specific piezoelectricity induces bone regeneration. Theranostics 2017;7:3387–97. https://doi.org/10.7150/thno.19748.Suche in Google Scholar PubMed PubMed Central
21. Abzan, N, Kharaziha, M, Labbaf, S. Development of three-dimensional piezoelectric polyvinylidene fluoride-graphene oxide scaffold by non-solvent induced phase separation method for nerve tissue engineering. Mater Des 2019;167:107636. https://doi.org/10.1016/j.matdes.2019.107636.Suche in Google Scholar
22. Hoop, M, Chen, X, Ferrari, A, Mushtaq, F, Ghazaryan, G, Tervoot, T, et al.. Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Sci Rep 2017;7:1–8. https://doi.org/10.1038/s41598-017-03992-3.Suche in Google Scholar PubMed PubMed Central
23. Rojas, C, Tedesco, M, Massobrio, P, Marino, A, Ciofani, G, Martinoia, S, et al.. Acoustic stimulation can induce a selective neural network response mediated by piezoelectric nanoparticles. J Neural Eng 2018;15:036016. https://doi.org/10.1088/1741-2552/aaa140.Suche in Google Scholar PubMed
24. Ciofani, G, Danti, S, D’Alessandro, D, Ricotti, L, Moscato, S, Bertoni, G, et al.. Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 2010;4:6267–77. https://doi.org/10.1021/nn101985a.Suche in Google Scholar PubMed
25. Zhang, K, Zheng, H, Liang, S, Gao, S. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater 2016;37:131–42. https://doi.org/10.1016/j.actbio.2016.04.008.Suche in Google Scholar PubMed
26. Yu, Y, Lü, X, Ding, F. MicroRNA regulatory mechanism by which PLLA aligned nano fibers in fluence PC12 cell differentiation. J Neural Eng 2015;12:46010. https://doi.org/10.1088/1741-2560/12/4/046010.Suche in Google Scholar PubMed
27. Du, S, Zhou, N, Gao, Y, Xie, G, Du, H, Jiang, H, et al.. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Res 2020;13:2525–33. https://doi.org/10.1007/s12274-020-2891-9.Suche in Google Scholar
28. Bhang, SH, Jang, WS, Han, J, Yoon, JK, La, WG, Lee, E, et al.. Zinc oxide nanorod-based piezoelectric dermal patch for wound healing. Adv Funct Mater 2017;27:1603497. https://doi.org/10.1002/adfm.201603497.Suche in Google Scholar
29. Bonvallet, PP, Culpepper, BK, Bain, JL, Schultz, MJ, Thomas, SJ, Bellis, SL. Microporous dermal-like electrospun scaffolds promote accelerated skin regeneration. Tissue Eng 2014;20:2434–44. https://doi.org/10.1089/ten.tea.2013.0645.Suche in Google Scholar
30. Sun, X, Lang, Q, Zhang, H, Cheng, L, Zhang, Y, Pan, G. Electrospun photocrosslinkable hydrogel fibrous scaffolds for rapid in vivo vascularized skin flap regeneration. Adv Funct Mater 2016;27:1604617. https://doi.org/10.1002/adfm.201604617.Suche in Google Scholar
31. Yin, Z, Chen, X, Chen, JL, Shen, WL, Nguyen, TMH, Gao, L, et al.. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials 2010;31:2163–75. https://doi.org/10.1016/j.biomaterials.2009.11.083.Suche in Google Scholar PubMed
32. Sensini, A, Gualandi, C, Zucchelli, A, Boyle, LA, Kao, AP, Reilly, GC, et al.. Tendon fascicle-inspired nanofibrous scaffold of polylactic acid/collagen with enhanced 3D-structure and biomechanical properties. Sci Rep 2018;8:1–15. https://doi.org/10.1038/s41598-018-35536-8.Suche in Google Scholar PubMed PubMed Central
33. Maghdouri-White, Y, Petrova, S, Sori, N, Polk, S, Wriggers, H, Ogle, R, et al.. Electrospun silk-collagen scaffolds and BMP-13 for ligament and tendon repair and regeneration. Biomed Phys Eng Express 2018;4. https://doi.org/10.1088/2057-1976/aa9c6f.Suche in Google Scholar
34. Ardeshirylajimi, A, Ghaderian, SM, Davood, M. Biomimetic scaffold containing PVDF nano fibers with sustained TGF- β release in combination with AT-MSCs for bladder tissue engineering. Gene 2018;676:195–201. https://doi.org/10.1016/j.gene.2018.07.046.Suche in Google Scholar PubMed
35. Gard, A, Lindahl, B, Batra, G, Hadziosmanovic, N, Hjort, M, Szummer, KE, et al.. Interphysician agreement on subclassification of myocardial infarction. Heart 2018;104:1284–91. https://doi.org/10.1136/heartjnl-2017-312409.Suche in Google Scholar PubMed PubMed Central
36. Yutzey, KE. Cardiomyocyte proliferation: teaching an old dogma new tricks. Circ Res 2017;120:627–9. https://doi.org/10.1161/circresaha.116.310058.Suche in Google Scholar PubMed PubMed Central
37. Yester, JW, Kühn, B. Mechanisms of cardiomyocyte proliferation and differentiation in development and regeneration. Curr Cardiol Rep 2017;19:13. https://doi.org/10.1007/s11886-017-0826-1.Suche in Google Scholar PubMed PubMed Central
38. Senyo, SE, Lee, RT, Kühn, B. Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res 2014;13:532–41. https://doi.org/10.1016/j.scr.2014.09.003.Suche in Google Scholar PubMed PubMed Central
39. Michler, RE. Stem cell therapy for heart failure. Cardiol Rev 2014;22:105–16. https://doi.org/10.1097/crd.0000000000000018.Suche in Google Scholar PubMed
40. Tsilimigras, DI, Oikonomou, EK, Moris, D, Schizas, D, Economopoulos, KP, Mylonas, KS. Stem cell therapy for congenital heart disease: a systematic review. Circulation 2017;136:2373–85. https://doi.org/10.1161/circulationaha.117.029607.Suche in Google Scholar PubMed
41. Terzic, A, Behfar, A. Stem cell therapy for heart failure: ensuring regenerative proficiency. Trends Cardiovasc Med 2016;26:395–404. https://doi.org/10.1016/j.tcm.2016.01.003.Suche in Google Scholar PubMed PubMed Central
42. Hong, KU, Bolli, R. Cardiac stem cell therapy for cardiac repair. Curr Treat Options Cardiovasc Med 2014;16:324. https://doi.org/10.1007/s11936-014-0324-3.Suche in Google Scholar PubMed PubMed Central
43. Park, H, Radisic, M, Lim, JO, Chang, BH, Vunjak-Novakovic, G. A novel composite scaffold for cardiac tissue engineering. In Vitro Cell Dev Biol Anim 2005;41:188–96. https://doi.org/10.1290/0411071.1.Suche in Google Scholar PubMed
44. Tandon, N, Cannizzaro, C, Chao, PHG, Maidhof, R, Marsano, A, Ting, H, et al.. Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 2009;4:155–73. https://doi.org/10.1038/nprot.2008.183.Suche in Google Scholar PubMed PubMed Central
45. You, JO, Rafat, M, Ye, GJC, Auguste, DT. Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Lett 2011;11:3643–8. https://doi.org/10.1021/nl201514a.Suche in Google Scholar PubMed
46. Sun, X, Nunes, SS. Biowire platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Methods 2016;101:21–6. https://doi.org/10.1016/j.ymeth.2015.11.005.Suche in Google Scholar PubMed
47. Au, HTH, Cheng, I, Chowdhury, MF, Radisic, M. Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes. Biomaterials 2007;28:4277–93. https://doi.org/10.1016/j.biomaterials.2007.06.001.Suche in Google Scholar PubMed PubMed Central
48. Halperin, C, Mutchnik, S, Agronin, A, Molotskii, M, Urenski, P, Salai, M, et al.. Piezoelectric effect in human bones studied in nanometer scale. Nano Lett 2004;4:1253–6. https://doi.org/10.1021/nl049453i.Suche in Google Scholar
49. Miara, B, Rohan, E, Zidi, M, Labat, B. Piezomaterials for bone regeneration design – homogenization approach. J Mech Phys Solid 2005;53:2529–56. https://doi.org/10.1016/j.jmps.2005.05.006.Suche in Google Scholar
50. Riggs, BL, Hartmann, LC. Selective estrogen-receptor modulators-mechanisms of action. N Engl J Med 2003;348:618–30. https://doi.org/10.1056/NEJMra022219.Suche in Google Scholar PubMed
51. Giusti, A, Hamdy, NAT, Papapoulos, SE. Atypical fractures of the femur and bisphosphonate therapy. A systematic review of case/case series studies. Bone 2010;47:169–80. https://doi.org/10.1016/j.bone.2010.05.019.Suche in Google Scholar
52. Allen, HL, Wase, A, Bear, WT. Indomethacin and aspirin: effect of nonsteroidal anti-inflammatory agents on the rate of fracture repair in the rat. Acta Orthop 1980;51:595–600. https://doi.org/10.3109/17453678008990848.Suche in Google Scholar
53. Rodan, GA, Martin, TJ. Therapeutic approaches to bone diseases. Science 2016;289:1508–14. https://doi.org/10.1126/science.289.5484.1508.Suche in Google Scholar
54. Snydman, D, Fishman, JA, Greenwald, MA, Grossi, PA. Transmission of infection with human allografts: essential considerations in donor screening. Clin Infect Dis 2012;55:720–7. https://doi.org/10.1093/cid/cis519.Suche in Google Scholar
55. Cypher, TJ, Grossman, JP. Biological principles of bone graft healing. J Foot Ankle Surg 1996;35:413–7. https://doi.org/10.1016/s1067-2516(96)80061-5.Suche in Google Scholar
56. Steadman, JR, Briggs, KK, Rodrigo, JJ, Kocher, MS, Gill, TJ, Rodkey, WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthrosc J Arthrosc Relat Surg 2003;19:477–84. https://doi.org/10.1053/jars.2003.50112.Suche in Google Scholar
57. Ahn, AC, Grodzinsky, AJ. Relevance of collagen piezoelectricity to “Wolff’s Law”: a critical review. Med Eng Phys 2009;31:733–41. https://doi.org/10.1016/j.medengphy.2009.02.006.Suche in Google Scholar
58. Yu, LMY, Leipzig, ND, Shoichet, MS. Promoting neuron adhesion and growth. Mater Today 2008;11:36–43. https://doi.org/10.1016/s1369-7021(08)70088-9.Suche in Google Scholar
59. Ghasemi-mobarakeh, L, Prabhakaran, MP, Morshed, M. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 2011;5:17–35. https://doi.org/10.1002/term.383.Suche in Google Scholar PubMed
60. Li, GN, Hoffman-Kim, D. Tissue-engineered platforms of axon guidance. Tissue Eng B Rev 2008;14:33–51. https://doi.org/10.1089/teb.2007.0181.Suche in Google Scholar PubMed
61. Cheremisinoff, P. Handbook of engineering polymeric materials, 1st ed. Oxford: CRC Press; 1997.10.1201/9781482292183Suche in Google Scholar
62. Borgens, RB. Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels. Neuroscience 1999;91:251–64. https://doi.org/10.1016/s0306-4522(98)00584-3.Suche in Google Scholar
63. Balint, R, Cassidy, NJ, Cartmell, SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 2014;10:2341–53. https://doi.org/10.1016/j.actbio.2014.02.015.Suche in Google Scholar PubMed
64. Roshani, M, Kiaie, N, Aghdam, RM. Biomaterials and stem cells as drug/gene-delivery vehicles for Parkinson’s treatment: an update. Regen Med 2021;16:10–20. https://doi.org/10.2217/rme-2021-0050.Suche in Google Scholar PubMed
65. Moulin, VJ, Dube, J, Drouin, OR, Levesque, P, Gauvin, R, Roberge, CJ, et al.. Electric potential across epidermis and its role during wound healing can be studied by using an in vitro reconstructed human skin. Adv Wound Care 2012;1:81–7. https://doi.org/10.1089/wound.2011.0318.Suche in Google Scholar PubMed PubMed Central
66. Gardner, SE, Frantz, RA, Schmidt, FL. Effect of electrical stimulation on chronic wound healing: a meta- analysis. Wound Repair Regen 1999;7:495–503. https://doi.org/10.1046/j.1524-475x.1999.00495.x.Suche in Google Scholar PubMed
67. Rio, M, Bola, S, Funk, RHW, Gerlach, G. Microfluidic measurement of cell motility in response to applied non-homogeneous DC electric fields. J Sensors Sens Syst 2016;5:237–43. https://doi.org/10.5194/jsss-5-237-2016.Suche in Google Scholar
68. Tomasek, JJ, Gabbiani, G, Hinz, B, Chaponnier, C, Brown, RA. Myofibroblasts and mechano: regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002;3:349–63. https://doi.org/10.1038/nrm809.Suche in Google Scholar PubMed
69. Clore, JN, Cohen, IK, Diegelmann, RF. Quantitation of collagen types I and III during wound healing in rat skin. Proc Soc Exp Biol Med 1979;161:337–40. https://doi.org/10.3181/00379727-161-40548.Suche in Google Scholar PubMed
70. Chen, Y, Ye, M, Song, L, Zhang, J, Yang, Y, Luo, S, et al.. Piezoelectric and photothermal dual functional film for enhanced dermal wound regeneration via upregulation of Hsp90 and HIF-1α. Appl Mater Today 2020;20:100756. https://doi.org/10.1016/j.apmt.2020.100756.Suche in Google Scholar
71. West, CR, Bowden, AE. Using tendon inherent electric properties to consistently track induced mechanical strain. Ann Biomed Eng 2012;40:1568–74. https://doi.org/10.1007/s10439-011-0504-1.Suche in Google Scholar PubMed
72. Laurencin, CT, Freeman, JW. Ligament tissue engineering: an evolutionary materials science approach. Biomaterials 2005;26:7530–6. https://doi.org/10.1016/j.biomaterials.2005.05.073.Suche in Google Scholar PubMed
73. Wu, G, Deng, X, Song, J, Chen, F. Enhanced biological properties of biomimetic apatite fabricated polycaprolactone/chitosan nanofibrous bio-composite for tendon and ligament regeneration. J Photochem Photobiol B Biol 2018;178:27–32. https://doi.org/10.1016/j.jphotobiol.2017.10.011.Suche in Google Scholar PubMed
74. Charernsriwilaiwat, N, Opanasopit, P, Rojanarata, T, Ngawhirunpat, T, Supaphol, P. Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydr Polym 2010;81:675–80. https://doi.org/10.1016/j.carbpol.2010.03.031.Suche in Google Scholar
75. Rogina, A. Electrospinning process: versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl Surf Sci 2014;296:221–30. https://doi.org/10.1016/j.apsusc.2014.01.098.Suche in Google Scholar
76. Simpkins, A. Robotic tactile sensing: technologies and system in IEEE robotics & automation magazine, New York. 2013; 20: 107. https://doi.org/10.1109/MRA.2013.2255515.Suche in Google Scholar
77. Zhang, J, Wang, R, Wang, C. Piezoelectric ZnO-CNT nanotubes under axial strain and electrical voltage. Physica E Low Dimens Syst Nanostruct 2012;46:105–12. https://doi.org/10.1016/j.physe.2012.09.001.Suche in Google Scholar
78. Agrawal, R, Espinosa, HD. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett 2011;11:786–90. https://doi.org/10.1021/nl104004d.Suche in Google Scholar PubMed
79. Chowdhury, R, Adhikari, S, Scarpa, F. Elasticity and piezoelectricity of zinc oxide nanostructure. Physica E Low Dimens Syst Nanostruct 2010;42:2036–40. https://doi.org/10.1016/j.physe.2010.03.018.Suche in Google Scholar
80. Michel, KH, Verberck, B. Phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride. Phys Rev B Condens Matter 2011;83:1–14. https://doi.org/10.1103/physrevb.83.115328.Suche in Google Scholar
81. Kim, ID, Avrahami, Y, Socci, L, Lopez-Royo, F, Tuller, HL. Ridge waveguide using highly oriented BaTiO3 thin films for electro-optic application. J Asian Ceram Soc 2014;2:231–4. https://doi.org/10.1016/j.jascer.2014.05.002.Suche in Google Scholar
82. Zhang, J, Wang, C, Adhikari, S. Fracture and buckling of piezoelectric nanowires subject to an electric field. J Appl Phys 2013;114:17–24. https://doi.org/10.1063/1.4829277.Suche in Google Scholar
83. Hong, J, Fang, D. Systematic study of the ferroelectric properties of Pb (Zr0.5 Ti0.5) O3 nanowires. J Appl Phys 2008;104:3–8. https://doi.org/10.1063/1.2982090.Suche in Google Scholar
84. Yuan, H, Lei, T, Qin, Y, He, JH, Yang, R. Design and application of piezoelectric biomaterials. J Phys D Appl Phys 2019;51. https://doi.org/10.1088/1361-6463/ab0532.Suche in Google Scholar
85. Fousek, J, Cross, LE, Litvin, DB. Possible piezoelectric composites based on the flexoelectric effect. Mater Lett 1999;39:287–91. https://doi.org/10.1016/s0167-577x(99)00020-8.Suche in Google Scholar
86. Azadian, E, Arjmand, B, Ardeshirylajimi, A, Hosseinzadeh, S, Omidi, M, Khojasteh, A. Polyvinyl alcohol modified polyvinylidene fluoride-graphene oxide scaffold promotes osteogenic differentiation potential of human induced pluripotent stem cells. J Cell Biochem 2020;121:3185–96. https://doi.org/10.1002/jcb.29585.Suche in Google Scholar PubMed
87. Setter, N, Damjanovic, D, Eng, L, Fox, G, Gevorgian, S, Hong, S, et al.. Ferroelectric thin films: review of materials, properties, and applications. J Appl Phys 2006;100:051606. https://doi.org/10.1063/1.2336999.Suche in Google Scholar
88. Kuo, CFJ, Wang, HY, Prasannan, A, Lai, JY. In vivo degradation study of polyvinylidene fluoride/polybutylene succinate/modified organic montmorillonite nanocomposite films implanted in the gastrointestinal tract. Polym Degrad Stabil 2020;172:109058. https://doi.org/10.1016/j.polymdegradstab.2019.109058.Suche in Google Scholar
89. Motamedi, AS, Mirzadeh, H, Hajiesmaeilbaigi, F, Bagheri-Khoulenjani, S, Shokrgozar, M. Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds. Prog Biomater 2017;6:113–23. https://doi.org/10.1007/s40204-017-0071-0.Suche in Google Scholar PubMed PubMed Central
90. Fukada, E. New piezoelectric polymers. Jpn J Appl Phys 1998;37:2775–80. https://doi.org/10.1143/jjap.37.2775.Suche in Google Scholar
91. Lee, YS, Collins, G, Arinzeh, TL. Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomater 2011;7:3877–86. https://doi.org/10.1016/j.actbio.2011.07.013.Suche in Google Scholar PubMed
92. Pereira, JDAS, Camargo, RCT, Filho, JCSC, Alves, N, Rodriguez-perez, MA, Constantino, CJL. Biomaterials from blends of fl uoropolymers and corn starch—implant and structural aspects. Mater Sci Eng C; 36:226–36. https://doi.org/10.1016/j.msec.2013.12.008.Suche in Google Scholar PubMed
93. Frubing, P, Kremmer, A, Neumann, W, Guy, IL. Dielectric relaxation in piezo-, pyro- and ferroelectric polyamide. IEEE Trans Dielectr Electr Insul 2004;11:271–9. https://doi.org/10.1109/tdei.2004.1285897.Suche in Google Scholar
94. Newman, BA, Lee, JW, Scheinbeim, JI. Ferroelectric and piezoelectric properties of odd-numbered nylons. Ferroelectrics 1992;298:229–34. https://doi.org/10.1080/00150199208223376.Suche in Google Scholar
95. Wang, H, Li, Y, Zuo, Y, Li, J, Ma, S, Cheng, L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 2007;28:3338–48. https://doi.org/10.1016/j.biomaterials.2007.04.014.Suche in Google Scholar PubMed
96. Fukada, E. Recent developments of polar piezoelectric polymers. IEEE Trans Dielectr Electr Insul 2006;13:1110–9. https://doi.org/10.1109/tdei.2006.247839.Suche in Google Scholar
97. Dhandayuthapani, B, Yoshida, Y, Maekawa, T, Kumar, DS. Polymeric scaffolds in tissue Engineering application : a review. Int J Polym Sci 2011;2011:290602. https://doi.org/10.1155/2011/290602.Suche in Google Scholar
98. Zhang, J, Liu, H, Ding, JX, Wu, J, Zhuang, XL, Chen, XS, et al.. High-pressure compression-molded porous resorbable polymer/hydroxyapatite composite scaffold for cranial bone regeneration. ACS Biomater Sci Eng 2016;2:1471–82. https://doi.org/10.1021/acsbiomaterials.6b00202.Suche in Google Scholar PubMed
99. Scaffaro, R, Lopresti, F, Botta, L, Rigogliuso, S, Ghersi, G. Integration of PCL and PLA in a monolithic porous scaffold for interface tissue engineering. J Mech Behav Biomed Mater 2016;63:303–13. https://doi.org/10.1016/j.jmbbm.2016.06.021.Suche in Google Scholar PubMed
100. Lv, Z, Zhao, N, Wu, Z, Zhu, C, Li, Q. Fabrication of novel open-cell foams of poly(ϵ-caprolactone)/poly(lactic acid) blends for tissue-engineering scaffolds. Ind Eng Chem Res 2018;57:12951–8. https://doi.org/10.1021/acs.iecr.8b02233.Suche in Google Scholar
101. Amirsardari, Z, Aghdam, RM, Salavati-Niasari, M, Shakhesi, S. Preparation and characterization of nanoscale ZrB2/carbon–resol composite for protection against high-temperature corrosion. J Therm Anal Calorim 2015;120:1535–41. https://doi.org/10.1007/s10973-015-4474-7.Suche in Google Scholar
102. Jung, Y, Kim, SS, Kim, YH, Kim, SH, Kim, BS, Kim, S, et al.. A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials 2005;26:6314–22. https://doi.org/10.1016/j.biomaterials.2005.04.007.Suche in Google Scholar PubMed
103. Guo, C, Guo, X, Cai, N, Dong, Y. Novel fabrication method of porous poly(lactic acid) scaffold with hydroxyapatite coating. Mater Lett 2012;74:197–9. https://doi.org/10.1016/j.matlet.2012.01.085.Suche in Google Scholar
104. Zou, Y, Qin, J, Huang, Z, Yin, G, Pu, X, He, D. Fabrication of aligned conducting PPy-PLLA fiber films and their electrically controlled guidance and orientation for neurites. ACS Appl Mater Interfaces 2016;8:12576–82. https://doi.org/10.1021/acsami.6b00957.Suche in Google Scholar PubMed
105. Evans, GRD, Brandt, K, Niederbichler, AD, Chauvin, P, Hermann, S, Bogle, M, et al.. Clinical long-term in vivo evaluation of poly (L-lactic acid) porous conduits for peripheral nerve regeneration. J Biomater Sci Polym Ed 2012;11:869–78. https://doi.org/10.1163/156856200744066.Suche in Google Scholar PubMed
106. Ju, J, Peng, X, Huang, K, Li, L, Liu, X, Chitrakar, C, et al.. High-performance porous PLLA-based scaffolds for bone tissue engineering: preparation, characterization, and in vitro and in vivo evaluation. Polymer 2019;180:121707. https://doi.org/10.1016/j.polymer.2019.121707.Suche in Google Scholar
107. Liu, K, Li, W, Chen, S, Wen, W, Lu, L, Liu, M, et al.. The design, fabrication and evaluation of 3D printed gHNTs/gMgO whiskers/PLLA composite scaffold with honeycomb microstructure for bone tissue engineering. Compos B Eng 2020;192:108001. https://doi.org/10.1016/j.compositesb.2020.108001.Suche in Google Scholar
108. Puppi, D, Chiellini, F, Piras, AM, Chiellini, E. Progress in polymer science polymeric materials for bone and cartilage repair. Prog Polym Sci 2010;35:403–40. https://doi.org/10.1016/j.progpolymsci.2010.01.006.Suche in Google Scholar
109. Di Martino, A, Sittinger, M, Risbud, MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005;26:5983–90. https://doi.org/10.1016/j.biomaterials.2005.03.016.Suche in Google Scholar PubMed
110. Kim, J, Yun, S, Ounaies, Z. Discovery of cellulose as a smart material. Macromolecules 2006;39:4202–6. https://doi.org/10.1021/ma060261e.Suche in Google Scholar
111. Zaborowska, M, Bodin, A, Bäckdahl, H, Popp, J, Goldstein, A, Gatenholm, P. Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 2010;6:2540–7. https://doi.org/10.1016/j.actbio.2010.01.004.Suche in Google Scholar
112. Aki, D, Ulag, S, Unal, S, Sengor, M, Ekren, N, Lin, CC, et al.. 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering. Mater Des 2020;196:109094. https://doi.org/10.1016/j.matdes.2020.109094.Suche in Google Scholar
113. Maharjan, B, Park, J, Kaliannagounder, VK, Awasthi, GP, Joshi, MK, Park, CH, et al.. Regenerated cellulose nanofiber reinforced chitosan hydrogel scaffolds for bone tissue engineering. Carbohydr Polym 2021;251:117023. https://doi.org/10.1016/j.carbpol.2020.117023.Suche in Google Scholar
114. Madub, K, Goonoo, N, Gimié, F, Ait Arsa, I, Schönherr, H, Bhaw-Luximon, A. Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering. Carbohydr Polym 2021;251:117025. https://doi.org/10.1016/j.carbpol.2020.117025.Suche in Google Scholar
115. Fukada, E. History and recent progress in piezoelectric polymers. IEEE Trans Ultrason Ferroelectr Freq Control 2000;47:1277–90. https://doi.org/10.1109/58.883516.Suche in Google Scholar
116. Ferreira, AM, Gentile, P, Chiono, V, Ciardelli, G. Collagen for bone tissue regeneration. Acta Biomater 2012;8:3191–200. https://doi.org/10.1016/j.actbio.2012.06.014.Suche in Google Scholar
117. Rocha, LB, Goissis, G, Rossi, MA. Biocompatibility of anionic collagen matrix as scaffold for bone healing. Biomaterials 2002;23:449–56. https://doi.org/10.1016/s0142-9612(01)00126-0.Suche in Google Scholar
118. Putri, NRE, Wang, X, Chen, Y, Li, X, Kawazoe, N, Chen, G. Preparation of PLGA-collagen hybrid scaffolds with controlled pore structures for cartilage tissue engineering. Prog Nat Sci Mater Int 2020;30:642–50. https://doi.org/10.1016/j.pnsc.2020.07.003.Suche in Google Scholar
119. Soysal, Y. Tissue engineered cartilage on collagen and PHBV matrices. Biomaterials 2005;26:5187–97.10.1016/j.biomaterials.2005.01.037Suche in Google Scholar PubMed
120. Lee, JE, Park, JC, Hwang, YS, Kim, JK, Kim, JG, Sub, H. Characterization of UV-irradiated dense/porous collagen membranes: morphology, enzymatic degradation, and mechanical properties. Yonsei Med J 2001;42:172–9. https://doi.org/10.3349/ymj.2001.42.2.172.Suche in Google Scholar PubMed
121. Nazempour, M, Mehrabani, D. The effect of allogenic human Wharton’s jelly stem cells seeded onto acellular dermal matrix in healing of rat burn wounds. J Cosmet Dermatol 2020;19:995–1001. https://doi.org/10.1111/jocd.13109.Suche in Google Scholar
122. Wang, H, Chou, Y, Wen, Z, Wang, Z, Chen, C, Ho, M. Novel biodegradable porous scaffold applied to skin regeneration. PLoS One 2013;8:2–12. https://doi.org/10.1371/journal.pone.0056330.Suche in Google Scholar
123. Przybyla, DE, Chmielewski, J. Higher-order assembly of collagen peptides into nano- and microscale materials. Biochemistry 2010;49:4411–9. https://doi.org/10.1021/bi902129p.Suche in Google Scholar
124. Jayakrishnan, A, Jameela, SR. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials 1996;17:471–84. https://doi.org/10.1016/0142-9612(96)82721-9.Suche in Google Scholar
125. Manjari, MS, Aaron, KP, Muralidharan, C, Rose, C. Highly biocompatible novel polyphenol cross-linked collagen scaffold for potential tissue engineering applications. React Funct Polym 2020;153:104630. https://doi.org/10.1016/j.reactfunctpolym.2020.104630.Suche in Google Scholar
126. Hänninen, A, Sarlin, E, Lyyra, I, Salpavaara, T, Kellomäki, M, Tuukkanen, S. Nanocellulose and chitosan based films as low cost, green piezoelectric materials. Carbohydr Polym 2018;202:418–24. https://doi.org/10.1016/j.carbpol.2018.09.001.Suche in Google Scholar PubMed
127. Silva, CC, Lima, CGA, Pinheiro, AG, Góes, JC, Figueiró, SD, Sombra, ASB. On the piezoelectricity of collagen-chitosan films. Phys Chem Chem Phys 2001;3:4154–7. https://doi.org/10.1039/b100189m.Suche in Google Scholar
128. Prokhorov, RALE, Bárcenas, GL, Sánchez, BLE, Franco, B, Padilla-Vaca, F, Landaverde, MAH, et al.. Chitosan-BaTiO3 nanostructured piezopolymer for tissue engineering. Colloids Surf B Biointerfaces 2020;196:111296. https://doi.org/10.1016/j.colsurfb.2020.111296.Suche in Google Scholar PubMed
129. Hosseini, ES, Manjakkal, L, Shakthivel, D, Dahiya, R. Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor. ACS Appl Mater Interfaces 2020;12:9008–16. https://doi.org/10.1021/acsami.9b21052.Suche in Google Scholar PubMed PubMed Central
130. Praveen, E, Murugan, S, Jayakumar, K. Investigations on the existence of piezoelectric property of a bio-polymer-chitosan and its application in vibration sensors. RSC Adv 2017;7:35490–5. https://doi.org/10.1039/c7ra04752e.Suche in Google Scholar
131. Mayeen, A, Kalarikkal, N. Development of ceramic-controlled piezoelectric devices for biomedical applications. Fundam Biomater: Ceram 2018;3:47–62. https://doi.org/10.1016/b978-0-08-102203-0.00002-0.Suche in Google Scholar
132. Zheng, T, Wu, H, Yuan, Y, Lv, X, Li, Q, Men, T, et al.. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ Sci 2017;10:528–37. https://doi.org/10.1039/c6ee03597c.Suche in Google Scholar
133. Zanfir, AV, Voicu, G, Busuioc, C, Jinga, SI, Albu, MG, Iordache, F. New Coll-HA/BT composite materials for hard tissue engineering. Mater Sci Eng C 2016;62:795–805. https://doi.org/10.1016/j.msec.2016.02.041.Suche in Google Scholar PubMed
134. Ball, JP, Mound, BA, Nino, JC, Allen, JB. Biocompatible evaluation of barium titanate foamed ceramic structures for orthopedic applications. J Biomed Mater Res 2014;102:2089–95. https://doi.org/10.1002/jbm.a.34879.Suche in Google Scholar PubMed
135. Baxter, FR, Bowen, CR, Turner, IG, Dent, ACE. Electrically active bioceramics: a review of interfacial responses. Ann Biomed Eng 2010;38:2079–92. https://doi.org/10.1007/s10439-010-9977-6.Suche in Google Scholar PubMed
136. Bassett, CAL, Becker, RO. Generation of electric potentials by bone in response to mechanical stress obtained in a highly purified state. For the detector response used, the sensitivity was of the order of 0.02 fig. Infrared spectra obtained by means not dependent upon cell. Science 1962;137:1063–4. https://doi.org/10.1126/science.137.3535.1063.Suche in Google Scholar PubMed
137. Lipiec, E, Kowalska, J, Wiecheć, A, Zieliński, PM, Kwiatek, WM, Iwaniec, M. Infrared spectroscopy in molecular study of the piezoelectric effect in pig’s shin bone. Acta Phys. Pol. A 2012;121:539–42. https://doi.org/10.12693/aphyspola.121.539.Suche in Google Scholar
138. Fan, B, Guo, Z, Li, X, Li, S, Gao, P, Xiao, X, et al.. Electroactive barium titanate coated titanium scaffold improves osteogenesis and osseointegration with low-intensity pulsed ultrasound for large segmental bone defects. Bioact Mater 2020;5:1087–101. https://doi.org/10.1016/j.bioactmat.2020.07.001.Suche in Google Scholar PubMed PubMed Central
139. Ehterami, A, Kazemi, M, Nazari, B. Fabrication and characterization of highly porous barium titanate scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications. J Mech Behav Biomed Mater 2017;79:195–202. https://doi.org/10.1016/j.jmbbm.2017.12.034.Suche in Google Scholar PubMed
140. Shankar, AH, Prasad, AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 1998;68:447–63. https://doi.org/10.1093/ajcn/68.2.447S.Suche in Google Scholar PubMed
141. Kishi, S, Yamaguchi, M. Inhibitory effect of zinc compounds on osteoclast-like cell formation in mouse marrow cultures. Biochem Pharmacol 1994;48:1225–30. https://doi.org/10.1016/0006-2952(94)90160-0.Suche in Google Scholar
142. Premanathan, M, Karthikeyan, K, Jeyasubramanian, K, Manivannan, G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotechnol Biol Med 2010;7:184–92. https://doi.org/10.1016/j.nano.2010.10.001.Suche in Google Scholar PubMed
143. Roguska, A, Belcarz, A, Suchecki, P, Andrzejczuk, M, Lewandowska, M. Antibacterial composite layers on Ti: role of ZnO nanoparticles. Arch Metall Mater 2016;61:213–6. https://doi.org/10.1515/amm-2016-0039.Suche in Google Scholar
144. Kumar, PTS, Lakshmanan, VK, Raj, M, Biswas, R, Hiroshi, T, Nair, SV, et al.. Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage. Pharm Res (N Y) 2013;30:523–37. https://doi.org/10.1007/s11095-012-0898-y.Suche in Google Scholar PubMed
145. Harikrishnan, P, Sivasamy, A. Preparation, characterization of Electrospun polycaprolactone-nano zinc oxide composite scaffolds for osteogenic applications. Nano-Struct Nano-Objects 2020;23:100518. https://doi.org/10.1016/j.nanoso.2020.100518.Suche in Google Scholar
146. Ghelich, R. Low temperature carbothermal reduction synthesis of ZrC nanofibers via cyclized electrospun PVP/Zr(OPr)4 hybrid. Int J Appl Ceram Technol 2016;13:352–8. https://doi.org/10.1111/ijac.12475.Suche in Google Scholar
147. Rasmussen, JW, Martinez, E, Louka, P, Wingett, DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expet Opin Drug Deliv 2010;7:1063–77. https://doi.org/10.1517/17425247.2010.502560.Suche in Google Scholar PubMed PubMed Central
148. Yu, SW, Kuo, ST, Tuan, WH, Tsai, YY, Wang, SF. Cytotoxicity and degradation behavior of potassium sodium niobate piezoelectric ceramics. Ceram Int 2012;38:2845–50. https://doi.org/10.1016/j.ceramint.2011.11.056.Suche in Google Scholar
149. Carville, NC, Collins, L, Manzo, M, Gallo, K, Lukasz, BI, McKayed, KK, et al.. Biocompatibility of ferroelectric lithium niobate and the influence of polarization charge on osteoblast proliferation and function. J Biomed Mater Res 2015;103:2540–8. https://doi.org/10.1002/jbm.a.35390.Suche in Google Scholar PubMed
150. Zhang, J, Qin, W, Zhang, J, Wang, Y, Cao, C, Jin, Y, et al.. A novel approach from infrared to ultraviolet emission enhancement in Yb3+, Er3+:CaF2 nanofilms. J Nanosci Nanotechnol 2008;8:1258–60. https://doi.org/10.1166/jnn.2008.18179.Suche in Google Scholar
151. Li, X, Wang, X, Jiang, X, Yamaguchi, M, Ito, A, Bando, Y, et al.. Boron nitride nanotube-enhanced osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 2016;104:323–9. https://doi.org/10.1002/jbm.b.33391.Suche in Google Scholar PubMed
152. Golberg, CZD, Bando, Y, Huang, Y, Terao, T, Mitome, M, Tang, C. Boron nitride nanotubes and nanosheets. ACS Nano 2002;4:2979–93. https://doi.org/10.1021/nn1006495.Suche in Google Scholar PubMed
153. Nakhmanson S, M, Calzolari, A, Meunier, V, Bernholc, J, Nardelli, MB. Spontaneous polarization and piezoelectricity in boron nitride nanotubes. Phys Rev B Condens Matter 2003;67:1–5. https://doi.org/10.1103/physrevb.67.235406.Suche in Google Scholar
154. Genchi, GG, Sinibaldi, E, Ceseracciu, L, Labardi, M, Marino, A, Marras, S, et al.. Ultrasound-activated piezoelectric P(VDF-TrFE)/boron nitride nanotube composite films promote differentiation of human SaOS-2 osteoblast-like cells. Nanomed Nanotechnol Biol Med 2018;14:2421–32. https://doi.org/10.1016/j.nano.2017.05.006.Suche in Google Scholar PubMed
155. Ciofani, G, Danti, S, Genchi, GG, Mazzolai, B, Mattoli, V. Boron nitride nanotubes: biocompatibility and potential spill-over in nanomedicine. Small 2013;9:1672–85. https://doi.org/10.1002/smll.201201315.Suche in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Comparison of the regulatory requirements for custom-made medical devices using 3D printing in Europe, the United States, and Australia
- Smart piezoelectric biomaterials for tissue engineering and regenerative medicine: a review
- Research Articles
- A machine learning approach to identify hand actions from single-channel sEMG signals
- Stacking classifier to improve the classification of shoulder motion in transhumeral amputees
- Real-time classification of movement patterns of tremor patients
- Automated detection of clinical depression based on convolution neural network model
- Classification of breast cancer with deep learning from noisy images using wavelet transform
Artikel in diesem Heft
- Frontmatter
- Reviews
- Comparison of the regulatory requirements for custom-made medical devices using 3D printing in Europe, the United States, and Australia
- Smart piezoelectric biomaterials for tissue engineering and regenerative medicine: a review
- Research Articles
- A machine learning approach to identify hand actions from single-channel sEMG signals
- Stacking classifier to improve the classification of shoulder motion in transhumeral amputees
- Real-time classification of movement patterns of tremor patients
- Automated detection of clinical depression based on convolution neural network model
- Classification of breast cancer with deep learning from noisy images using wavelet transform