Startseite Effects of the nasal passage on forced oscillation lung function measurements
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of the nasal passage on forced oscillation lung function measurements

  • Chuong Ngo EMAIL logo , Karl Krüger , Thomas Vollmer , Stefan Winter , Bernhard Penzlin , Sylvia Lehmann , Steffen Leonhardt und Berno Misgeld
Veröffentlicht/Copyright: 21. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The forced oscillation technique (FOT) is a non-invasive pulmonary function test which is based on the measurement of respiratory impedance. Recently, promising results were obtained by the application of FOT on patients with respiratory failure and obstructive sleep apnea (OSA). By using a nasal mask instead of a mouthpiece, the influences of the nasal passage and upper shunt alter the measured mechanical impedance. In this paper, we investigated the effects of the nasal passage and mask on FOT measurements from eight healthy subjects. A method for flow correction has been developed, which contains a pressure-flow characteristics compensation of the undetermined flow leakage at the face-mask interface. Impedance calculation and parameter estimation were performed in the frequency domain using fast Fourier transform (FFT). Average nasal parameters were Rnaw=4.07 cmH2O/l/s for resistance and Lnaw=0.0183 cmH2O/l/s2 for inertance. On average, the nasal resistance corresponds to 65.85% of the total resistance.

References

[1] Badia JR, Farré R, Rigau J, Uribe ME, Navajas D, Montserrat JM. Forced oscillation measurements do not affect upper airway muscle tone or sleep in clinical studies. Eur Respir J 2001; 18: 335–339.10.1183/09031936.01.00085001Suche in Google Scholar PubMed

[2] Bates JHT, Irvin CG, Farré R, Hantos Z. Oscillation mechanics of the respiratory system. Compr Physiol 2011; 1: 1233–1272.10.1002/cphy.c100058Suche in Google Scholar PubMed

[3] Berdel D, Koch U. A comparison of two active rhinomanometric methods (oscillation method, spontaneous flow method) in 17 patietns with nasal septum deviation before and after septoplasty. Eur Arch Oto-Rhino-L 1983; 237: 115–124.Suche in Google Scholar

[4] Diong B, Nazeran H, Nava P, Goldman M. Modeling human respiratory impedance. IEEE Eng Med Biol 2007; 26: 48–55.10.1109/MEMB.2007.289121Suche in Google Scholar

[5] DuBois A, Brody A, Lewis D, Burgess B. Oscillation mechanics of lungs and chest in man. J Appl Physiol 1956; 8: 587–594.10.1152/jappl.1956.8.6.587Suche in Google Scholar PubMed

[6] Farré R, Gavela E, Rotger M, Ferrer M, Roca J, Navajas D. Noninvasive assessment of respiratory resistance in severe chronic respiratory patients with nasal cpap. Eur Respir J 2000; 15: 314–319.10.1034/j.1399-3003.2000.15b16.xSuche in Google Scholar PubMed

[7] Farré R, Montserrat JM, Navajas D. Noninvasive monitoring of respiratory mechanics during sleep. Eur Respir J 2004; 24: 1052–1060.10.1183/09031936.04.00072304Suche in Google Scholar PubMed

[8] Farré R, Montserrat JM, Navajas D. Assessment of upper airway mechanics during sleep. Respir Physiol Neurobiol 2008; 163: 74–81.10.1016/j.resp.2008.06.017Suche in Google Scholar PubMed

[9] Fullton JM, Fischer ND, Drake AF, Bromberg PA. Frequency dependence of effective nasal resistance. Ann Oto Rhinol Laryn 1984; 93: 140–145.10.1177/000348948409300208Suche in Google Scholar PubMed

[10] Gustin P, Dhem AR, Lomba F, Lekeux P, Van de Woestijne KP, Landser FJ. Measurement of total respiratory impedance in calves by the forced oscillation technique. J Appl Physiol 1988; 64: 1786–1791.10.1152/jappl.1988.64.5.1786Suche in Google Scholar PubMed

[11] Hahn I, Scherer PW, Mozell MM. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J Appl Physiol 1993; 75: 2273–2287.10.1152/jappl.1993.75.5.2273Suche in Google Scholar PubMed

[12] Hall GL, Hantos Z, Wildhaber JH, Sly PD. Contribution of nasal pathways to low frequency respiratory impedance in infants. Thorax 2002; 57: 396–399.10.1136/thorax.57.5.396Suche in Google Scholar PubMed PubMed Central

[13] Iga T, Inatome K, Seo O. Nasal respiratory resistance in healthy adults using the oscillation method. J Otolaryngol Jpn 1988; 88: 486–491.Suche in Google Scholar

[14] Kelly JT, Prasad AK, Wexler AS. Detailed flow patterns in the nasal cavity. J Appl Physiol 2000; 89: 323–337.10.1152/jappl.2000.89.1.323Suche in Google Scholar PubMed

[15] Lorino AM, Lofaso F, Abi-Nader F, et al. Nasal airflow resistance measurement: forced oscillation technique versus posterior rhinomanometry. Eur Respir J 1998; 11: 720–725.10.1183/09031936.98.11030720Suche in Google Scholar PubMed

[16] MacLeod D, Birch M. Respiratory impedance measurements: forced oscillation methods. Med Biol Eng Comput 2001; 39: 505–516.10.1007/BF02345140Suche in Google Scholar PubMed

[17] Ngo C, Kube A, Krüger K, et al. Identication of respiratory parameters in frequency and time domain with forced oscillation technique. In: The International Federation of Automatic Control. The 9th IFAC symposium on biological and medical systems 2015:177–182.10.1016/j.ifacol.2015.10.135Suche in Google Scholar

[18] Oostveen E, MacLeod D, Lorino H, et al. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J 2003; 22: 1026–1041.10.1183/09031936.03.00089403Suche in Google Scholar PubMed

[19] Pride NB. Forced oscillation techniques for measuring mechanical properties of the respiratory system. Thorax 1992; 47: 317–320.10.1136/thx.47.4.317Suche in Google Scholar PubMed PubMed Central

[20] Schreck S, Sullivan KJ, Ho CM, Chang HK. Correlations between flow resistance and geometry in a model of the human nose. J Appl Physiol 1993; 75: 1767–1775.10.1152/jappl.1993.75.4.1767Suche in Google Scholar PubMed

[21] Sullivan KJ, Chang HK. Flow dynamics of the nasal passage. In: Epstein MAF, Ligas JR, editors. Respiratory biomechanics. New York, NY: Springer 1990:98–105.10.1007/978-1-4612-3452-4_12Suche in Google Scholar

[22] Sullivan KJ, Chang HK. Steady and oscillatory transnasal pressure-flow relationships in healthy adults. J Appl Physiol 1991; 71: 983–992.10.1152/jappl.1991.71.3.983Suche in Google Scholar PubMed

[23] Tawfik B, Sullivan KJ, Chang HK. A new method to measure nasal impedance in spontaneously breathing adults. J Appl Physiol 1991; 71: 9–15.10.1152/jappl.1991.71.1.9Suche in Google Scholar PubMed

[24] Trindade IEK, Gomes ADOC, Sampaio-Teixeira ACM, Trindade SHK. Adult nasal volumes assessed by acoustic rhinometry. Rev Bras Otorrinolaringol 2007; 73: 32–39.10.1590/S0034-72992007000100006Suche in Google Scholar

Received: 2016-8-2
Accepted: 2017-1-12
Published Online: 2017-2-21
Published in Print: 2017-11-27

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/bmt-2016-0158/html
Button zum nach oben scrollen