Abstract
High gradient magnetic separation is a well-established technology in the mineral processing industry, and has been used for decades in the bioprocessing industry. Less well known is the increasing role that high gradient magnetic separation is playing in biomedical applications, for both diagnostic and therapeutic purposes. We review here the state of the art in this emerging field, with a focus on therapeutic haemofiltration, the key enabling technologies relating to the functionalisation of magnetic nanoparticles with target-specific binding agents, and the development of extra-corporeal circuits to enable the in situ filtering of human blood.
References
[1] Albeniz I, Turker-Sener L, Bas A, Kalelioglu I, Nurten R. Isolation of hematopoietic stem cells and the effect of CD38 expression during the early erythroid progenitor cell development process. Oncol Lett 2012; 3: 55–60.10.3892/ol.2011.455Search in Google Scholar PubMed PubMed Central
[2] Aljarrah K, Mhaidat NM, Al-Akhras MA, et al. Magnetic nanoparticles sensitize MCF-7 breast cancer cells to doxorubicin-induced apoptosis. World J Surg Oncol 2012; 10: 62.10.1186/1477-7819-10-62Search in Google Scholar PubMed PubMed Central
[3] Ambashta RD, Sillanpaa M. Water purification using magnetic assistance: a review. J Hazard Mater 2010; 180: 38–49.10.1016/j.jhazmat.2010.04.105Search in Google Scholar PubMed
[4] Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29: 1303–1310.10.1097/00003246-200107000-00002Search in Google Scholar PubMed
[5] Arkhis A, Elaissari A, Delair T, Verrier B, Mandrand B. Capture of enveloped viruses using polymer tentacles containing magnetic latex particles. J Biomed Nanotechnol 2010; 6: 28–36.10.1166/jbn.2010.1093Search in Google Scholar PubMed
[6] Bae J-E, Huh M-I, Ryu B-K, et al. The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles. Biomaterials 2011; 32: 9401–9414.10.1016/j.biomaterials.2011.08.075Search in Google Scholar PubMed
[7] Biedenbach DJ, Moet GJ, Jones RN. Occurrence and antimicrobial resistance pattern comparisons among bloodstream infection isolates from the SENTRY Antimicrobial Surveillance Program (1997–2002). Diagn Micr Infect Dis 2004; 50: 59–69.10.1016/j.diagmicrobio.2004.05.003Search in Google Scholar PubMed
[8] Bockenfeld D, Chen H, Kaminski MD, Rosengart AJ, Rempfer D. A parametric study of a portable magnetic separator for separation of nanospheres from circulatory system. Separ Sci Technol 2010; 45: 355–363.10.1080/01496390903485013Search in Google Scholar
[9] Bockenfeld D, Chen H, Rempfer D, Kaminski MD, Rosengart AJ. Modeling high gradient magnetic separation in biological fluids (DFD.HA.6). Bull Am Phys Soc 2006; 1–4.Search in Google Scholar
[10] Busch J, Huber P, Pfluger E, Miltenyi ST, Holtz J, Radbruch A. Enrichment of fetal cells from maternal blood by high gradient magnetic cell sorting (double MACS) for PCR-based genetic analysis. Prenatal Diag 1994; 14: 1129–1140.10.1002/pd.1970141206Search in Google Scholar PubMed
[11] Cai K, Li J, Luo Z, Hu Y, Hou Y, Ding X. beta-Cyclodextrin conjugated magnetic nanoparticles for diazepam removal from blood. Chem Commun (Camb) 2011; 47: 7719–7721.10.1039/c1cc11855bSearch in Google Scholar PubMed
[12] Casey LC, Balk RA, Bone RC. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 1993; 119: 771–778.10.7326/0003-4819-119-8-199310150-00001Search in Google Scholar
[13] Cavaillon JM. Polymyxin B for endotoxin removal in sepsis. Lancet Infect Dis 2011; 11: 426–427.10.1016/S1473-3099(11)70131-1Search in Google Scholar
[14] Chang C-L, Jalal SI, Huang W, Mahmood A, Matei DE, Savran CA. High-throughput immunomagnetic cell detection using a microaperture chip system. IEEE Sensors J 2014; 14: 3008–3013.10.1109/JSEN.2014.2321167Search in Google Scholar
[15] Chen GD, Alberts CJ, Rodriguez W, Toner M. Concentration and purification of human immunodeficiency virus type 1 virions by microfluidic separation of superparamagnetic nanoparticles. Anal Chem 2010; 82: 723–728.10.1021/ac9024522Search in Google Scholar PubMed PubMed Central
[16] Chen H, Ebner AD, Bockenfeld D, et al. A comprehensive in vitro investigation of a portable magnetic separator device for human blood detoxification. Phys Med Biol 2007; 52: 6053–6072.10.1088/0031-9155/52/19/023Search in Google Scholar PubMed
[17] Chen H, Ebner AD, Ritter JA, Kaminski MD, Rosengart AJ. Theoretical analysis of a magnetic separator device for ex-vivo blood detoxification. Separ Sci Technol 2008; 43: 996–1020.10.1080/01496390801910609Search in Google Scholar
[18] Chen H, Kaminski MD, Caviness PL, et al. Magnetic separation of micro-spheres from viscous biological fluids. Phys Med Biol 2007; 52: 1185–1196.10.1088/0031-9155/52/4/022Search in Google Scholar PubMed
[19] Chen H, Kaminski MD, Liu X, et al. A novel human detoxification system based on nanoscale bioengineering and magnetic separation techniques. Med Hypotheses 2007; 68: 1071–1079.10.1016/j.mehy.2005.04.047Search in Google Scholar PubMed
[20] Chen Y, Li P, Huang P-H, et al. Rare cell isolation and analysis in microfluidics. Lab Chip 2014; 14: 626–645.10.1039/c3lc90136jSearch in Google Scholar PubMed PubMed Central
[21] Cheng X, Chen G, Rodriguez WR. Micro- and nanotechnology for viral detection. Anal Bioanal Chem 2009; 393: 487–501.10.1007/s00216-008-2514-xSearch in Google Scholar PubMed PubMed Central
[22] Cheung M-C, Goldberg JD, Kan YW. Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood. Nat Genet 1996; 14: 264–268.10.1038/ng1196-264Search in Google Scholar
[23] Cho Y-K, Lee J-G, Park J-M, Lee B-S, Lee Y, Ko C. One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 2007; 7: 565–573.10.1039/b616115dSearch in Google Scholar
[24] Chou T-C, Hsu W, Wang C-H, Chen Y-J, Fang J-M. Rapid and specific influenza virus detection by functionalized magnetic nanoparticles and mass spectrometry. J Nanobiotechnol 2011; 9: 52.10.1186/1477-3155-9-52Search in Google Scholar
[25] Davies B, Cohen J. Endotoxin removal devices for the treatment of sepsis and septic shock. Lancet Infect Dis 2011; 11: 65–71.10.1016/S1473-3099(10)70220-6Search in Google Scholar
[26] Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991; 77: 1627–1653.10.1182/blood.V77.8.1627.1627Search in Google Scholar
[27] Dinarello CA, Cannon JG, Wolff SM, et al. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med 1986; 163: 1433–1450.10.1084/jem.163.6.1433Search in Google Scholar
[28] Dunlop E, Feiler W, Mattione M. Magnetic separation in biotechnology. Biotechnol Adv 1984; 2: 63–74.10.1016/0734-9750(84)90241-6Search in Google Scholar
[29] Eichhorn EJ, Gheorghiade M. Digoxin. Prog Cardiovasc Dis 2002; 44: 251–266.10.1053/pcad.2002.31591Search in Google Scholar
[30] Enis MGD, Lipart C, LeBorgne J, et al. Detection of disseminated tumor cells in peripheral blood of colorectal cancer patients. Int J Cancer 1997; 74: 540–544.10.1002/(SICI)1097-0215(19971021)74:5<540::AID-IJC11>3.0.CO;2-ASearch in Google Scholar
[31] Franzreb M, Siemann-Herzberg M, Hobley TJ, Thomas OR. Protein purification using magnetic adsorbent particles. Appl Microbiol Biotechnol 2006; 70: 505–516.10.1007/s00253-006-0344-3Search in Google Scholar
[32] Georgieva J, Milling A, Orfanos CE, Geilen CC. Magnetic bead RT-PCR: establishment of a new method for detecting circulating melanoma cells. Melanoma Res 2002; 12: 309–317.10.1097/00008390-200208000-00002Search in Google Scholar PubMed
[33] Gorevic PD, Munoz PC, Casey TT, et al. Polymerization of intact beta-2-microglobulin in tissue causes amyloidosis in patients on chronic hemodialysis. Proc Natl Acad Sci 1986; 83: 7908–7912.10.1073/pnas.83.20.7908Search in Google Scholar PubMed PubMed Central
[34] Graham LM, Nguyen TM, Lee SB. Nanodetoxification: emerging role of nanomaterials in drug intoxication treatment. Nanomedicine 2011; 6: 921–928.10.2217/nnm.11.75Search in Google Scholar PubMed PubMed Central
[35] Grüttner C, Böhmer V, Casnati A, et al. Dendrimer-coated magnetic particles for radionuclide separation. J Magn Magn Mater 2005; 293: 559–566.10.1016/j.jmmm.2005.01.073Search in Google Scholar
[36] Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point of care diagnostics: status and future. Anal Chem 2011; 84: 487–515.10.1021/ac2030199Search in Google Scholar PubMed
[37] Hack CE, De Groot ER, Felt-Bersma RJF, et al. Increased plasma levels of interleukin-6 in sepsis. Blood 1989; 74: 1704–1711.10.1182/blood.V74.5.1704.1704Search in Google Scholar
[38] Hajbà L, Guttman A. Circulating tumor-cell detection and capture using microfluidic devices. Trend Anal Chem 2014; 59: 9–16.10.1016/j.trac.2014.02.017Search in Google Scholar
[39] Hall MJ, Williams SN, DeFrances CJ, Golosinskiy A. Inpatient care for septicemia or sepsis: a challenge for patients and hospitals. NCHS Data Brief 2011; 62.Search in Google Scholar
[40] Herrmann IK, Bernabei RE, Urner M, Grass RN, Beck-Schimmer B, Stark WJ. Device for continuous extracorporeal blood purification using target-specific metal nanomagnets. Nephrol Dial Transpl 2011; 26: 2948–2954.10.1093/ndt/gfq846Search in Google Scholar PubMed
[41] Herrmann IK, Grass RN, Mazunin D, Stark WJ. Synthesis and covalent surface functionalization of nonoxidic iron core-shell nanomagnets. Chem Mater 2009; 21: 3275–3281.10.1021/cm900785uSearch in Google Scholar
[42] Herrmann IK, Schlegel A, Graf R, et al. Nanomagnet-based removal of lead and digoxin from living rats. Nanoscale 2013; 5: 8718–8723.10.1039/c3nr02468gSearch in Google Scholar PubMed
[43] Herrmann IK, Urner M, Graf S, et al. Endotoxin removal by magnetic separation-based blood purification. Adv Healthc Mater 2013; 2: 829–835.10.1002/adhm.201200358Search in Google Scholar PubMed
[44] Herrmann IK, Urner M, Koehler FM, et al. Blood purification using functionalized core/shell nanomagnets. Small 2010; 6: 1388–1392.10.1002/smll.201000438Search in Google Scholar PubMed
[45] Hinds KA, Hill JM, Shapiro EM, et al. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 2003; 102: 867–872.10.1182/blood-2002-12-3669Search in Google Scholar PubMed
[46] Horák D, Babic M, Macková H, Benes MJ. Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J Sep Sci 2007; 30: 1751–1772.10.1002/jssc.200700088Search in Google Scholar PubMed
[47] Hubbuch JJ, Matthiesen DB, Hobley TJ, Thomas OR. High gradient magnetic separation versus expanded bed adsorption: a first principle comparison. Bioseparation 2001; 10: 99–112.10.1023/A:1012034923621Search in Google Scholar
[48] Hung L-Y, Chang J-C, Tsai Y-C, et al. Magnetic nanoparticle-based immunoassay for rapid detection of influenza infections by using an integrated microfluidic system. Nanomed Nanotechnol, Biol, Med 2014; 10: 819–829.10.1016/j.nano.2013.11.009Search in Google Scholar PubMed PubMed Central
[49] Jin J, Yang F, Zhang F, Hu W, Sun S-B, Ma J. 2, 2′-(Phenylazanediyl) diacetic acid modified Fe3O4@PEI for selective removal of cadmium ions from blood. Nanoscale 2012; 4: 733–736.10.1039/C2NR11481JSearch in Google Scholar PubMed
[50] Jing Y, Moore LR, Williams PS, et al. Blood progenitor cell separation from clinical leukapheresis product by magnetic nanoparticle binding and magnetophoresis. Biotechnol Bioeng 2007; 96: 1139–1154.10.1002/bit.21202Search in Google Scholar PubMed
[51] Kamihira M, Kumar A. Development of separation technique for stem cells. In: Kumar A, Galaev IY, Mattiasson B, editors. Cell separation: fundamentals, analytical and preoperative methods. Springer 2007: 173–193.10.1007/10_2006_043Search in Google Scholar PubMed
[52] Kaminski MD, Rosengart AJ. Detoxification of blood using injectable magnetic nanospheres: a conceptual technology description. J Magn Magn Mater 2005; 293: 398–403.10.1016/j.jmmm.2005.02.055Search in Google Scholar
[53] Kang JH, Krause S, Tobin H, Mammoto A, Kanapathipillai M, Ingber DE. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 2012; 12: 2175–2181.10.1039/c2lc40072cSearch in Google Scholar PubMed
[54] Kang JH, Super M, Yung CW, et al. An extracorporeal blood-cleansing device for sepsis therapy. Nat Med 2014; 20: 1211–1216.10.1038/nm.3640Search in Google Scholar PubMed
[55] Kang S, Yang JE, Kim J, et al. Removal of intact β2-microglobulin at neutral PH by using seed-conjugated polymer beads prepared with β2-microglobulin-derived peptide (58–67). Biotechnol Progr 2011; 27: 521–529.10.1002/btpr.562Search in Google Scholar PubMed
[56] Kelland D. High gradient magnetic separation applied to mineral beneficiation. IEEE Trans Magn 1973; 9: 307–310.10.1109/TMAG.1973.1067683Search in Google Scholar
[57] Kemsheadl J, Ugelstad J. Magnetic separation techniques: their application to medicine. Mol Cell Biochemy 1985; 67: 11–18.10.1007/BF00220980Search in Google Scholar PubMed
[58] Kim S, Han S-I, Park M-J, et al. Circulating tumor cell microseparator based on lateral magnetophoresis and immunomagnetic nanobeads. Anal Chem 2013; 85: 2779–2786.10.1021/ac303284uSearch in Google Scholar PubMed
[59] Ko S-M, Kwon J, Vaidya B, et al. Development of lectin-linked immunomagnetic separation for the detection of hepatitis A virus. Viruses 2014; 6: 1037–1048.10.3390/v6031037Search in Google Scholar PubMed PubMed Central
[60] Krizová J, Španová A, Rittich B, Horák D. Magnetic hydrophilic methacrylate-based polymer microspheres for genomic DNA isolation. J Chromatogr A 2005; 1064: 247–253.10.1016/j.chroma.2004.12.014Search in Google Scholar PubMed
[61] Kularatne BY, Lorigan P, Browne S, Suvarna SK, Smith MO, Lawry J. Monitoring tumour cells in the peripheral blood of small cell lung cancer patients. Cytometry (Clinical Cytometry) 2002; 50: 160–167.10.1002/cyto.10071Search in Google Scholar PubMed
[62] Leary TP, Gutierrez RA, Muerhoff AS, Birkenmeyer LG, Desai SM, Dawson GJ. A chemiluminescent, magnetic particle-based immunoassay for the detection of hepatitis C virus core antigen in human serum or plasma. J Med Virol 2006; 78: 1436–1440.10.1002/jmv.20716Search in Google Scholar PubMed
[63] Lee HY, Bae DR, Park JC, Song H, Han WS, Jung JH. A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood. Angew Chem Int Ed 2009; 48: 1239–1243.10.1002/anie.200804714Search in Google Scholar
[64] Leroux J-C. Injectable nanocarriers for biodetoxification. Nat Nanotechnol 2007; 2: 679–684.10.1038/nnano.2007.339Search in Google Scholar
[65] Li S, Guo Z, Liu Y, Yang Z, Hui HK. Integration of microfiltration and anion-exchange nanoparticles-based magnetic separation with MALDI mass spectrometry for bacterial analysis. Talanta 2009; 80: 313–320.10.1016/j.talanta.2009.06.069Search in Google Scholar
[66] Lu A-H, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 2007; 46: 1222–1244.10.1002/anie.200602866Search in Google Scholar
[67] Ma G, Brady WJ, Pollack M, Chan TC. Electrocadriographic manifestations: digitalis toxicity. J Emerg Med 2001; 20: 145–152.10.1016/S0736-4679(00)00312-7Search in Google Scholar
[68] Mellors JW, Rinaldo CR, Gupta P, White RM, Todd JA, Kingsley LA. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science (New York, NY) 1996; 272: 1167–1170.10.1126/science.272.5265.1167Search in Google Scholar PubMed
[69] Mertz CJ, Kaminski MD, Xie Y, Finck MR, Guy S, Rosengart AJ. In vitro studies of functionalized magnetic nanospheres for selective removal of a simulant biotoxin. J Magn Magn Mater 2005; 293: 572–577.10.1016/j.jmmm.2005.01.075Search in Google Scholar
[70] Miltenyi S, Müller W, Weichel W, Radbruch A. High gradient magnetic cell separation with MACS. Cytometry 1990; 11: 231–238.10.1002/cyto.990110203Search in Google Scholar PubMed
[71] Miyachi H, Masukawa A, Ohshima T, Hirose T, Impraim C, Ando Y. Automated specific capture of Hepatitis C virus RNA with probes and paramagnetic particle separation. J Clin Microbiol 2000; 38: 18–21.10.1128/JCM.38.1.18-21.2000Search in Google Scholar PubMed PubMed Central
[72] Miyata T, Ada O, Inagi R, et al. Beta-2-microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J Clin Invest 1993; 92: 1243–1252.10.1172/JCI116696Search in Google Scholar PubMed PubMed Central
[73] Muluneh M, Issadore D. Microchip-based detection of magnetically labeled cancer biomarkers. Adv Drug Deliv Rev 2014; 66: 101–109.10.1016/j.addr.2013.09.013Search in Google Scholar
[74] Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun 2000; 68: 688–693.10.1128/IAI.68.2.688-693.2000Search in Google Scholar
[75] Nunez L, Kaminski MD. Transuranic separation using organophosphorus extractants adsorbed onto superparamagnetic carriers. J Magn Magn Mater 1999; 194: 102–107.10.1016/S0304-8853(98)00571-XSearch in Google Scholar
[76] Nunez L, Buchholz BA, Kiminski M, Aase SB, Brown NR, Vandegrift GF. Actinide separation of high-level waste using solvent extractants on magnetic microparticles. Separ Sci Technol 1996; 31: 1393–1407.10.1080/01496399608001403Search in Google Scholar
[77] Oder R. High gradient magnetic separation theory and applications. IEEE Trans Magn 1976; 12: 428–435.10.1109/TMAG.1976.1059076Search in Google Scholar
[78] Olsvik O, Popovic T, Skjerve E, et al. Magnetic separation techniques in diagnostic microbiology. Clin Microbiol Rev 1994; 7: 43–54.10.1128/CMR.7.1.43Search in Google Scholar PubMed PubMed Central
[79] Pankhurst QA, Pollard RJ. Fine particle magnetic oxides. J Phys-Condens Mat 1993; 5: 8487–8508.10.1088/0953-8984/5/45/002Search in Google Scholar
[80] Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36: R167–R181.10.1088/0022-3727/36/13/201Search in Google Scholar
[81] Pankhurst QA, Thanh NTK, Jones SK, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2009; 42: 224001–224001.10.1088/0022-3727/42/22/224001Search in Google Scholar
[82] Payne MJ, Campbell S, Kroll RG. Lectin-magnetic separation can enhance methods for the detection of Staphylococcus aureus, Salmonella enteritidis and Listeria monocytogenes. Food Microbiol 1993; 10: 75–83.10.1006/fmic.1993.1008Search in Google Scholar
[83] Pfuntner A, Wier LM, Steiner C. Healthcare cost and utilization project statistical brief #168: Costs for hospital stays in the United States, 2011. Agency for Healthcare Research Quality; 2013.Search in Google Scholar
[84] Plouffe BD. Magnetic particle based microfluidic separation of cancer cells from whole blood for applications in diagnostic medicine (PhD Thesis: http://hdl.handle.net/2047/d20001030). Boston, USA: Northeastern University 2011.Search in Google Scholar
[85] Plouffe BD, Mahalanabis M, Lewis LH, Klapperich CM, Murthy SK. Clinically relevant microfluidic magnetophoretic isolation of rare-cell populations for diagnostic and therapeutic monitoring applications. Anal Chem 2012; 84: 1336–1344.10.1021/ac2022844Search in Google Scholar
[86] Porter J, Robinson J, Pickup R, Edwards C. An evaluation of lectin-mediated magnetic bead cell sorting for the targeted separation of enteric bacteria. J Appl Microbiol 1998; 84: 722–732.10.1046/j.1365-2672.1998.00403.xSearch in Google Scholar
[87] Richards M. Sepsis management as an NHS clinical priority (http://www.england.nhs.uk/wp-content/uploads/2013/12/spesis-brief.pdf) NHS England: The UK Sepsis Trust 2013.Search in Google Scholar
[88] Roath S, Smith AR, Watson JHP. High-gradient magnetic separation in blood and bone marrow processing. J Magn Magn Mater 1990; 85: 285–289.10.1016/0304-8853(90)90067-ZSearch in Google Scholar
[89] Rosengart A, Kaminski MD. Magnetic particle-based therapy. US Patent App 10/844,180 2004.Search in Google Scholar
[90] Rosengart AJ, Kaminski MD. Decorporation of biohazards utilizing nanoscale magnetic carrier systems. In: Kumar C, Hormes J, Leuschner C, editors. Nanofabrication towards biomedical applications: techniques, tools, applications, and impact. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA 2005: 343–364.10.1002/3527603476.ch13Search in Google Scholar
[91] Sakudo A, Ikuta K. Efficient capture of infectious H5 avian influenza virus utilizing magnetic beads coated with anionic polymer. Biochem Biophys Res Commun 2008; 377: 85–88.10.1016/j.bbrc.2008.09.083Search in Google Scholar PubMed
[92] Sakudo A, Onodera T. Virus capture using anionic polymer-coated magnetic beads (review). Int J Mol Med 2012; 30: 3–7.10.3892/ijmm.2012.962Search in Google Scholar PubMed
[93] Satoh K. Virus concentration using polyethyleneimine-conjugated magnetic beads for improving the sensitivity of nucleic acid amplification tests. J Virol Methods 2003; 114: 11–19.10.1016/j.jviromet.2003.08.002Search in Google Scholar PubMed
[94] Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets – an updated view. Mediat Inflamm 2013; 2013: 165974.10.1155/2013/165974Search in Google Scholar PubMed PubMed Central
[95] Shah AM. Technologies for the isolation of circulating tumor cells (PhD Thesis: http://hdl.handle.net/1721.1/72916). Boston, USA: Massachusetts Institute of Technology 2012.Search in Google Scholar
[96] Song E-Q, Hu J, Wen C-Y, et al. Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS Nano 2011; 5: 761–770.10.1021/nn1011336Search in Google Scholar PubMed PubMed Central
[97] Stamopoulos D, Benaki D, Bouziotis P, Zirogiannis PN. In vitro utilization of ferromagnetic nanoparticles in hemodialysis therapy. Nanotechnology 2007; 18: 495102–495102.10.1088/0957-4484/18/49/495102Search in Google Scholar PubMed
[98] Stamopoulos D, Bouziotis P, Benaki D, Kotsovassilis C, Zirogiannis PN. Utilization of nanobiotechnology in haemodialysis: mock-dialysis experiments on homocysteine. Nephrol, Dial, Transpl 2008; 23: 3234–3239.10.1093/ndt/gfn189Search in Google Scholar
[99] Stamopoulos D, Bouziotis P, Benaki D, et al. Nanobiotechnology for the prevention of dialysis-related amyloidosis. Therap Apher Dial 2009; 13: 34–41.10.1111/j.1744-9987.2009.00603.xSearch in Google Scholar
[100] Stamopoulos D, Gogola V, Manios E, et al. Biocompatibility and solubility of Fe3O4-BSA conjugates with human blood. Curr Nanosci 2009; 5: 188–181.10.2174/157341309788185424Search in Google Scholar
[101] Stamopoulos D, Manios E, Gogola V, Niarchos D, Pissas M. On the biocompatibility of Fe3O4 ferromagnetic nanoparticles with human blood cells. J Nanosci Nanotechnol 2010; 10: 6110–6115.10.1166/jnn.2010.2616Search in Google Scholar
[102] Sun SL, Lo YL, Chen HY, Wang LF. Hybrid polyethylenimine and polyacrylic acid-bound iron oxide as a magnetoplex for gene delivery. Langmuir 2012; 28: 3542–3552.10.1021/la204529uSearch in Google Scholar
[103] Talasaz AH, Powell AA, Huber DE, et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc Natl Acad Sci USA 2009; 106: 3970–3975.10.1073/pnas.0813188106Search in Google Scholar
[104] Tan SY, Pepys MB, Hawkins PN. Treatment of amyloidosis. Am J Kidney Dis 1995; 26: 267–285.10.1016/0272-6386(95)90647-9Search in Google Scholar
[105] Torio CM, Andrews RM. Healthcare cost and utilization project statistical brief #160: National inpatient hospital costs: the most expensive conditions by payer, 2011ama. Agency for Healthcare Research Quality; 2013.Search in Google Scholar
[106] Uchida E, Kogi M, Oshizawa T, et al. Optimization of the virus concentration method using polyethyleneimine-conjugated magnetic beads and its application to the detection of human hepatitis A, B and C viruses. J Virol Methods 2007; 143: 95–103.10.1016/j.jviromet.2007.02.014Search in Google Scholar PubMed
[107] Veyret R, Elaissari A, Marianneau P, Sall AA, Delair T. Magnetic colloids for the generic capture of viruses. Anal Biochem 2005; 346: 59–68.10.1016/j.ab.2005.07.036Search in Google Scholar PubMed
[108] Wang HE, Devereaux RS, Yealy DM, Safford MM, Howard G. National variation in United States sepsis mortality: a descriptive study. Int J Health Geogr 2010; 9.10.1186/1476-072X-9-9Search in Google Scholar PubMed PubMed Central
[109] Wang L, Yang Z, Gao J, et al. A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J Am Chem Soc 2006; 128: 13358–13359.10.1021/ja0651355Search in Google Scholar
[110] Weber C, Falkenhagen D. Specific blood purification by means of antibody-conjugated magnetic microspheres. In: Schutt W, Teller J, Zborowski M, editors. Scientific and clinical applications of magnetic carriers. Springer US 1997: 371–378.10.1007/978-1-4757-6482-6_28Search in Google Scholar
[111] Wen CY, Wu LL, Zhang ZL, et al. Quick-response magnetic nanospheres for rapid, efficient capture and sensitive detection of circulating tumor cells. ACS Nano 2014; 8: 941–949.10.1021/nn405744fSearch in Google Scholar
[112] Wognum AW, Eaves C, Thomas TE. Identification and isolation of hematopoietic stem cells. Arch Med Res 2003; 34: 461–475.10.1016/j.arcmed.2003.09.008Search in Google Scholar
[113] Yassin AA, Elwaseef AM, Elnashar MM, et al. Protamine-adsorbed magnetic nanoparticles for efficient isolation and concentration of hepatitis-C virus from human plasma samples. Chem Commun 2014; 50: 590–592.10.1039/C3CC46793GSearch in Google Scholar
[114] Yung CW, Fiering J, Mueller AJ, Ingber DE. Micromagnetic-microfluidic blood cleansing device. Lab Chip 2009; 9: 1171–1177.10.1039/b816986aSearch in Google Scholar
[115] Zborowski M, Chalmers JJ. Magnetic Cell Separation. Amsterdam: Elsevier 2008.Search in Google Scholar
[116] Zborowski M, Chalmers JJ, Moore LR. Rare cell separation and analysis by magnetic sorting. Anal Chem 2011; 83: 8050–8056.10.1021/ac200550dSearch in Google Scholar
[117] Zhao XX, Ozaki Y, Suzumori N, Sato T, Suzumori K. Enrichment of fetal cells from maternal blood by magnetic activated cell sorting (MACS) with fetal cell specific antibodies: one-step versus two-step MACS. Congen Anom 2002; 42: 120–124.10.1111/j.1741-4520.2002.tb00860.xSearch in Google Scholar
[118] Zigeuner RE, Riesenberg R, Pohla H, Hofstetter A, Oberneder R. Immunomagnetic cell enrichment detects more disseminated cancer cells than immunocytochemistry in vitro. J Urol 2000; 164: 1834–1837.10.1016/S0022-5347(05)67116-9Search in Google Scholar
[119] Zigeuner RE, Riesenberg R, Pohla H, Hofstetter A, Oberneder R. Isolation of circulating cancer cells from whole blood by immunomagnetic cell enrichment and unenriched immunocytochemistry in vitro. J Urol 2003; 169: 701–705.10.1016/S0022-5347(05)63996-1Search in Google Scholar
©2015 by De Gruyter
Articles in the same Issue
- Frontmatter
- Editorial
- Magnetic nanoparticles for biomedical applications
- Special issue articles
- Biomedical applications of high gradient magnetic separation: progress towards therapeutic haeomofiltration
- Magnetic nanoparticles adapted for specific biomedical applications
- Degradation of magnetic nanoparticles mimicking lysosomal conditions followed by AC susceptibility
- Magnetorelaxometry procedures for quantitative imaging and characterization of magnetic nanoparticles in biomedical applications
- Magnetic relaxometry as applied to sensitive cancer detection and localization
- Extended arrays for nonlinear susceptibility magnitude imaging
- Magnetic nanoparticles for magnetic drug targeting
- Fluid mechanics aspects of magnetic drug targeting
- The possibility of using magnetic nanoparticles to increase the therapeutic efficiency of Herceptin antibody
- Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia
- Means to increase the therapeutic efficiency of magnetic heating of tumors
Articles in the same Issue
- Frontmatter
- Editorial
- Magnetic nanoparticles for biomedical applications
- Special issue articles
- Biomedical applications of high gradient magnetic separation: progress towards therapeutic haeomofiltration
- Magnetic nanoparticles adapted for specific biomedical applications
- Degradation of magnetic nanoparticles mimicking lysosomal conditions followed by AC susceptibility
- Magnetorelaxometry procedures for quantitative imaging and characterization of magnetic nanoparticles in biomedical applications
- Magnetic relaxometry as applied to sensitive cancer detection and localization
- Extended arrays for nonlinear susceptibility magnitude imaging
- Magnetic nanoparticles for magnetic drug targeting
- Fluid mechanics aspects of magnetic drug targeting
- The possibility of using magnetic nanoparticles to increase the therapeutic efficiency of Herceptin antibody
- Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia
- Means to increase the therapeutic efficiency of magnetic heating of tumors