Startseite Plant ecophysiological responses to drought, nocturnal warming and variable climate in the Pannonian sand forest-steppe: results of a six-year climate manipulation experiment
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Plant ecophysiological responses to drought, nocturnal warming and variable climate in the Pannonian sand forest-steppe: results of a six-year climate manipulation experiment

  • Andrea Mojzes EMAIL logo , Tibor Kalapos und Edit Kovács-Láng
Veröffentlicht/Copyright: 29. Dezember 2017
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 72 Heft 12

Abstract

The impacts of year-round nocturnal warming or late spring rain exclusion on three plant functional types were studied in a plot-scale climate simulation experiment in a semiarid sand forest-steppe of Central Hungary. Ecophysiological traits were followed through six years for the C3 bunch grass Festuca vaginata, the spreading C4 grass Cynodon dactylon and shrub-sized root suckers of Populus alba. In general, experimental treatments had slighter effects than weather fluctuations yielding extremities did. Populus alba responded to nocturnal warming with developing slenderer leaves. Rain exclusion reduced leaf physiological activity or growth, but only during or just after the treatment, and in certain years. When assessing treatment and background climatic variation effects together, in spring, leaf area growth was consistently stimulated by increasing temperature, but decreased with longer rainless periods for P. alba and F. vaginata. Physiological responses in spring indicated low temperature limitation for C. dactylon, and both low and high temperature control for P. alba. Longer summer droughts reduced leaf gas exchange, particularly for F. vaginata with substantial drop in photochemical activity and chlorophyll content. These results suggest that shallow rooted C3 bunch grasses can be the most susceptible to climatic variation, thus their abundance is expected to decline in the Pannonian forest-steppe. In contrast, plants having deeper roots and clonal integration will probably be less affected by the projected warming and drying climate. C4 photosynthesis or southern geographical distribution may also be beneficial, thus, the abundance of such species is expected to diminish less or even increase.


In memory of Gábor Fekete, prominent vegetation scientist, founder of plant ecophysiological research in Hungary

** Electronic supplementary material. The online version of this article (DOI: 10.1515/biolog-2017-0163) contains supplementary material, which is available to authorized users.


Acknowledgements

Support from EU 5th Framework Programme (EU FW5 EVK2-CT-2000-00094), the National Research and Development Program of the Hungarian Government (NKFP-3B/0008/2002) and the Hungarian Scientific Research Fund (OTKA M27557, M41454, T34790, T38028) is acknowledged. The research reported here laid the groundwork for the project no. 120844, which has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the PD_16 funding scheme. We thank Claus Beier for his comments on an earlier draft of the manuscript, Eszter Lellei-Kovács and Sándor Barabás for collecting and preprocessing meteorological data, and Zoltán Botta-Dukát for advices on statistical analyses. We also thank the anonymous reviewers for their helpful comments on an earlier version of the manuscript.

References

Alward R.D., Detling J.K. & Milchunas D.G. 1999. Grassland vegetation changes and nocturnal global warming. Science 283: 229–231.10.1126/science.283.5399.229Suche in Google Scholar PubMed

Bartholy J., Pongrácz R. & Pieczka I. 2014. How the climate will change in this century? Hung. Geogr. Bull. 63: 55–67.10.15201/hungeobull.63.1.5Suche in Google Scholar

Beier C., Beierkuhnlein C., Wohlgemuth T., Peñuelas J., Emmett B., Körner C., de Boeck H., Christensen J.H., Leuzinger S., Janssens I.A. & Hansen K. 2012. Precipitation manipulation experiments – challenges and recommendations for the future. Ecol. Lett. 15: 899–911.10.1111/j.1461-0248.2012.01793.xSuche in Google Scholar PubMed

Beier C., Emmett B., Gundersen P., Tietema A., Peñuelas J., Estiearte M., Gordon C., Gorissen A., Llorens L., Roda F. & Williams D. 2004. Novel approaches to study climate change effects on terrestrial ecosystems in the field: drought and passive nighttime warming. Ecosystems 7: 583–597.10.1007/s10021-004-0178-8Suche in Google Scholar

Chapin III F.S., Shaver G.R., Giblin A.E., Nadelhoffer K.J. & Laundre J.A. 1995. Responses of arctic tundra to experimental and observed changes in climate. Ecology 76: 694–711.10.2307/1939337Suche in Google Scholar

Ciais Ph., Reichstein M., Viovy N., Granier A., Ogée J., Allard V., Aubinet M., Buchmann N., Bernhofer Chr., Carrara A., Chevallier F., De Noblet N., Friend A.D., Friedlingstein P., Grünwald T., Heinesch B., Keronen P., Knohl A., Krinner G., Loustau D., Manca G., Matteucci G., Miglietta F., Ourcival J.M., Papale D., Pilegaard K., Rambal S., Seufert G., Soussana J.F., Sanz M.J., Schulze E.D., Vesala T. & Valentini R. 2005. Europe–wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529–533.10.1038/nature03972Suche in Google Scholar PubMed

Clifton–Brown J.C. & Jones M.B. 1997. The thermal response of leaf extension rate in genotypes of the C4–grass Miscanthus: an important factor in determining the potential productivity of different genotypes. J. Exp. Bot. 48: 1573–1581.10.1093/jexbot/48.313.1573Suche in Google Scholar

De Boeck H.J., Vicca S., Roy J., Nijs I., Milcu A., Kreyling J., Jentsch A., Chabbi A., Campioli M., Callaghan T., Beierkuhnlein C. & Beier C. 2015. Global change experiments: challenges and opportunities. BioScience 65: 922–931.10.1093/biosci/biv099Suche in Google Scholar

Díaz S. & Cabido M. 1997. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 8: 463–474.10.1111/j.1654-1103.1997.tb00842.xSuche in Google Scholar

Euro+Med (2006–): Euro+Med PlantBase – the information resource for Euro–Mediterranean plant diversity. Published on the Internet http://ww2.bgbm.org/EuroPlusMed/ (accessed 18.11.2016).Suche in Google Scholar

Fay P.A., Carlisle J.D., Danner B.T., Lett M.S., McCarron J.K., Stewart C., Knapp A.K., Blair J.M. & Collins S.L. 2002. Altered rainfall patterns, gas exchange, and growth in grasses and forbs. Int. J. Plant Sci. 163: 549–557.10.1086/339718Suche in Google Scholar

Fekete G. 1992. The holistic view of succession reconsidered. Coenoses 7: 21–29.Suche in Google Scholar

Forde B.J. 1966. Translocation in grasses. 1. Bermuda grass. New Zeal. J. Bot. 4: 479–495.10.1080/0028825X.1966.10429064Suche in Google Scholar

Fu Z., Niu S. & Dukes J.S. 2015. What have we learned from global change manipulative experiments in China? A meta–analysis. Sci. Rep. 5: 12344.10.1038/srep12344Suche in Google Scholar

Gamon J.A., Peñuelas J. & Field C.B. 1992. A narrow–waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41: 35–44.10.1016/0034-4257(92)90059-SSuche in Google Scholar

Gamon J.A. & Surfus J.S. 1999. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 143: 105–117.10.1046/j.1469-8137.1999.00424.xSuche in Google Scholar

Grime J.P. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86: 902–910.10.1046/j.1365-2745.1998.00306.xSuche in Google Scholar

Grman E., Lau J.A., Schoolmaster D.R., Jr. & Gross K.L. 2010. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett. 13: 1400–1410.10.1111/j.1461-0248.2010.01533.xSuche in Google Scholar PubMed

Hedeker D. 2004. An introduction to growth modeling, pp. 215–224. In: Kaplan D. (ed), The Sage Handbook of Quantitative Methodology for the Social Sciences, Sage Publications, Inc., Thousand Oaks, California.10.4135/9781412986311.n12Suche in Google Scholar

Hooper D.U., Solan M., Symstad A., Díaz S., Gessner M.O., Buchmann N., Degrange V., Grime P., Hulot F., Mermillod–Blondin F., Roy J., Spehn E. & van Peer L. 2002. Species diversity, functional diversity, and ecosystem functioning, pp. 195–281. In: Loreau M., Naeem S. & Inchausti P. (eds), Biodiversity and Ecosystem Functioning: Synthesis and Perspectives, Oxford University Press, Oxford.Suche in Google Scholar

Hoover D.L., Duniway M.C. & Belnap J. 2015. Pulse–drought atop press–drought: unexpected plant responses and implications for dryland ecosystems. Oecologia 179: 1211–1221.10.1007/s00442-015-3414-3Suche in Google Scholar PubMed

Hudson J.M.G., Henry G.H.R. & Cornwell W.K. 2011. Taller and larger: shifts in Arctic tundra leaf traits after 16 years of experimental warming. Glob. Change Biol. 17: 1013–1021.10.1111/j.1365-2486.2010.02294.xSuche in Google Scholar

Imada S., Yamanaka N. & Tamai S. 2008. Water table depth affects Populus alba fine root growth and whole plant biomass. Funct. Ecol. 22: 1018–1026.10.1111/j.1365-2435.2008.01454.xSuche in Google Scholar

Janssen J.A.M. et al. 2016. European Red List of Habitats. Part 2. Terrestrial and freshwater habitats. Publications Office of the European Union, Luxembourg, 38 pp.Suche in Google Scholar

Jentsch A., Kreyling J. & Beierkuhnlein C. 2007. A new generation of climate–change experiments: events, not trends. Front. Ecol. Environ. 5: 365–374.10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2Suche in Google Scholar

Kalapos T. 1989. Drought adaptive plant strategies in a semiarid sandy grassland. Abstr. Bot. 13: 1–15.Suche in Google Scholar

Kalapos T. 1991. C3 and C4 grasses of Hungary: environmental requirements, phenology and role in the vegetation. Abstr. Bot. 15: 83–88.Suche in Google Scholar

Kovács–Láng E. 1974. Examination of dynamics of organic matter in a perennial open sandy steppe–meadow (Festucetum vaginatae danubiale) at the Csévharaszt IBP sample area (Hungary). Acta Bot. Acad. Sci. Hung. 20: 309–326.Suche in Google Scholar

Kovács–Láng E., Kalapos T. & Mészáros–Draskovits R. 1989. Comparison of photosynthesis and transpiration in four species of a semiarid grassland community, pp. 67–76. In: Gáborčík N. (ed), Ekológia Trávneho Porastu III. (Grassland Ecology III.), Dom techniky CSVTS, Banská Bystrica.Suche in Google Scholar

Kovács–Láng E., Kröel–Dulay Gy., Kertész M., Fekete G., Bartha S., Mika J., Dobi–Wantuch I., Rédei T., Rajkai K. & Hahn I. 2000. Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30: 385–407.10.1127/phyto/30/2000/385Suche in Google Scholar

Kovács–Láng E., Kröel–Dulay Gy., Rédei T., Lhotsky B. & Garadnai J. 2006. The effect of climate change on forest–steppe ecosystems in the Carpathian Basin, pp. 294–300. In: Láng I., Faragó T. & Iványi Zs. (eds), International Conference on Climate Change: Impacts and Responses in Central and Eastern European Countries. 5–8 November 2005, Pécs, Hungary.Suche in Google Scholar

Krízsik V. & Körmöczi L. 2000. Spatial spreading of Robinia pseudo–acacia and Populus alba clones in sandy habitats. Tiscia 32: 3–8.Suche in Google Scholar

Kröel–Dulay Gy., Ransijn J., Schmidt I.K., Beier C., De Angelis P., de Dato G., Dukes J.S., Emmett B., Estiarte M., Garadnai J., Kongstad J., Kovács–Láng E., Larsen K.S., Liberati D., Ogaya R., Riis–Nielsen T., Smith A., Sowerby A., Tietema A. & Peñuelas J. 2015. Increased sensitivity to climate change in disturbed ecosystems. Nat. Commun. 6: 6682.10.1038/ncomms7682Suche in Google Scholar PubMed

Langer R.H.M. 1979. How Grasses Grow. 2nd ed. Edward Arnold (Publishers) Ltd., London, 66 pp.Suche in Google Scholar

Lavorel S. & Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16: 545–556.10.1046/j.1365-2435.2002.00664.xSuche in Google Scholar

Liu D., Llusiá J., Ogaya R., Estiarte M., Llorens L., Yang X. & Peñuelas J. 2016. Physiological adjustments of a Mediterranean shrub to long–term experimental warming and drought treatments. Plant Sci. 252: 53–61.10.1016/j.plantsci.2016.07.004Suche in Google Scholar PubMed

Llorens L., Peñuelas J., Beier C., Emmett B., Estiarte M. & Tietema A. 2004. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a North–South European gradient. Ecosystems 7: 613–624.10.1007/s10021-004-0180-1Suche in Google Scholar

Llorens L., Peñuelas J. & Emmett B. 2002. Developmental instability and gas exchange responses of a heathland shrub to experimental drought and warming. Int. J. Plant Sci. 163: 959–967.10.1086/342713Suche in Google Scholar

Llorens L., Peñuelas J. & Estiarte M. 2003. Ecophysiological responses of two Mediterranean shrubs, Erica multiflora and Globularia alypum, to experimentally drier and warmer conditions. Physiol. Plant. 119: 231–243.10.1034/j.1399-3054.2003.00174.xSuche in Google Scholar

Logan B.A., Adams III W.W. & Demmig–Adams B. 2007. Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions. Funct. Plant Biol. 34: 853–859.10.1071/FP07113Suche in Google Scholar

Magyar P. 1933. A homokfásítás és növényszociológiai alapjai. (Afforestation on sand soil and its phytosociological bases.) Erdészeti Kísérletek 35: 139–198. (In Hungarian with German Abstract)Suche in Google Scholar

Mamolos A.P., Veresoglou D.S., Noitsakis V. & Gerakis A. 2001. Differential drought tolerance of five coexisting plant species in Mediterranean lowland grasslands. J. Arid Environ. 49: 329–341.10.1006/jare.2001.0792Suche in Google Scholar

Mänd P., Hallik L., Peñuelas J., Nilson T., Duce P., Emmett B.A., Beier C., Estiarte M., Garadnai J., Kalapos T., Schmidt I. K., Kovács–Láng E., Prieto P., Tietema A., Westerwald J. W. & Kull O. 2010. Responses of the reflectance indices PRI and NDVI to experimental warming and drought in European shrublands along a north–south climatic gradient. Remote Sens. Environ. 114: 626–636.10.1016/j.rse.2009.11.003Suche in Google Scholar

Manzanera J.A. & Martínez–Chacón M.F. 2007. Ecophysiological competence of Populus alba L., Fraxinus angustifolia Vahl., and Crataegus monogyna Jacq. used in plantations for the recovery of riparian vegetation. Environ. Manage. 40: 902–912.10.1007/s00267-007-9016-zSuche in Google Scholar PubMed

Maricle B.R. & Adler P.B. 2011. Effects of precipitation on photosynthesis and water potential in Andropogon gerardii and Schizachyrium scoparium in a southern mixed grass prairie. Environ. Exp. Bot. 72: 223–231.10.1016/j.envexpbot.2011.03.011Suche in Google Scholar

Milla R. & Reich P.B. 2007. The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proc. R. Soc. B 274: 2109–2114.10.1098/rspb.2007.0417Suche in Google Scholar PubMed PubMed Central

Molnár Zs., Biró M., Bartha S. & Fekete G. 2012. Past Trends, Present State and Future Prospects of Hungarian Forest–Steppes, pp. 209–252. In: Werger M.J.A. & van Staalduinen M.A. (eds), Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World, Springer, Dordrecht, Heidelberg, New York, London.10.1007/978-94-007-3886-7_7Suche in Google Scholar

Ogaya R., Peñuelas J., Asensio D. & Llusiá J. 2011. Chlorophyll fluorescence responses to temperature and water availability in two co–dominant Mediterranean shrub and tree species in a long–term field experiment simulating climate change. Environ. Exp. Bot. 73: 89–93.10.1016/j.envexpbot.2011.08.004Suche in Google Scholar

Parsons A.N., Welker J.M., Wookey P.A., Press M.C., Callaghan T.V. & Lee J.A. 1994. Growth responses of four sub–Arctic dwarf shrubs to simulated environmental change. J. Ecol. 82: 307–318.10.2307/2261298Suche in Google Scholar

Pearcy R.W. & Ehleringer J. 1984. Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ. 7: 1–13.10.1111/j.1365-3040.1984.tb01194.xSuche in Google Scholar

Peñnuelas J., Filella I. & Gamon J.A. 1995. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 131: 291–296.10.1111/j.1469-8137.1995.tb03064.xSuche in Google Scholar

Peñuelas J., Prieto P., Beier C., Cesaraccio C., de Angelis P., de Dato G., Emmett B.A., Estiarte M., Garadnai J., Gorissen A., Kovács–Láng E., Kröel–Dulay Gy., Llorens L., Pellizzaro G., Riis–Nielsen T., Schmidt I.K. & Sirca C. 2007. Response of plant species richness and primary productivity in shrublands along a north–south gradient in Europe to seven years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003. Glob. Change Biol. 13: 2563–2581.10.1111/j.1365-2486.2007.01464.xSuche in Google Scholar

Peñuelas J., Sardans J., Estiarte M., Ogaya R., Carnicer J., Coll M., Barbeta A., Rivas–Ubach A., Llusià J., Garbulsky M., Filella I. & Jump A.S. 2013. Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob. Change Biol. 19: 2303–2338.10.1111/gcb.12143Suche in Google Scholar

Prieto P., Peñuelas J., Llusià J., Asensio D. & Estiarte M. 2009a. Effects of long–term experimental night–time warming and drought on photosynthesis, Fv/Fm and stomatal conductance in the dominant species of a Mediterranean shrubland. Acta Physiol. Plant. 31: 729–739.10.1007/s11738-009-0285-4Suche in Google Scholar

Prieto P., Peñuelas J., Niinemets Ü., Ogaya R., Schmidt I.K., Beier C., Tietema A., Sowerby A., Emmett B.A., Kovács–Láng E., Kröel–Dulay Gy., Lhotsky B., Cesaraccio C., Pellizzaro G., de Dato G., Sirca C. & Estiarte M. 2009b. Changes in the onset of spring growth in shrubland species in response to experimental warming along a north–south gradient in Europe. Global Ecol. Biogeogr. 18: 473–484.10.1111/j.1466-8238.2009.00460.xSuche in Google Scholar

Quinn G.P. & Keough M.J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, New York, 537 pp.10.1017/CBO9780511806384Suche in Google Scholar

Resco V., Ignace D.D., Sun W., Huxman T.E., Weltzin J.F. & Williams D.G. 2008. Chlorophyll fluorescence, predawn water potential and photosynthesis in precipitation pulse–driven ecosystems – implications for ecological studies. Funct. Ecol. 22: 479–483.10.1111/j.1365-2435.2008.01396.xSuche in Google Scholar

Sage R.F. & McKown A.D. 2006. Is C4 photosynthesis less phenotypically plastic than C3 photosynthesis? J. Exp. Bot. 57: 303–317.10.1093/jxb/erj040Suche in Google Scholar PubMed

Schreiber U., Schliwa W. & Bilger U. 1986. Continuous recording of photochemical and non–photochemical chlorophyll fluorescence quenching with a new type of modulation fluorimeter. Photosynth. Res. 10: 51–62.10.1007/BF00024185Suche in Google Scholar

Schwinning S., Starr B.I. & Ehleringer J.R. 2005. Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part I: effects on soil water and plant water uptake. J. Arid Environ. 60: 547–566.10.1016/j.jaridenv.2004.07.003Suche in Google Scholar

Seddon A.W.R., Macias–Fauria M., Long P.R., Benz D. & Willis K.J. 2016. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531: 229–232.10.1038/nature16986Suche in Google Scholar PubMed

Simon T. & Batanouny K.H. 1971. Qualitative and quantitative studies on the root system of Festuctum vaginatae. Ann. Univ. Sci. Budapest., Sec. Biol. 13: 155–171.Suche in Google Scholar

Sims D.A. & Gamon J.A. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81: 337–354.10.1016/S0034-4257(02)00010-XSuche in Google Scholar

Smith M.D. & Knapp A.K. 2003. Dominant species maintain ecosystem function with non–random species loss. Ecol. Lett. 6: 509–517.10.1046/j.1461-0248.2003.00454.xSuche in Google Scholar

Stylinski C.D., Gamon J.A. & Oechel W.C. 2002. Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia 131: 366–374.10.1007/s00442-002-0905-9Suche in Google Scholar PubMed

Suzuki S. & Kudo G. 1997. Short–term effects of simulated environmental change on phenology, leaf traits, and shoot growth of alpine plants on a temperate mountain, northern Japan. Glob. Change Biol. 3: 108–115.10.1111/j.1365-2486.1997.gcb146.xSuche in Google Scholar

Thomas H. & Stoddart J.L. 1995. Temperature sensitivities of Festuca arundinacea Schreb. and Dactylis glomerata L. ecotypes. New Phytol. 130: 125–134.10.1111/j.1469-8137.1995.tb01822.xSuche in Google Scholar

Tuba Z. 1984. Changes of carotenoids in various drought adapted species during subsequent dry and wet periods. Acta Bot. Hung. 30: 217–228.Suche in Google Scholar

Tuba Z., Csintalan Zs., Szente K., Nagy Z., Fekete G., Larcher W. & Lichtenthaler H.K. 2008. Winter photosynthetic activity of twenty temperate semi–desert sand grassland species. J. Plant Physiol. 165: 1438–1454.10.1016/j.jplph.2007.10.017Suche in Google Scholar PubMed

Turnbull M.H., Tissue D.T., Murthy R., Wang X., Sparrow A.D. & Griffin K.L. 2004. Nocturnal warming increases photosynthesis at elevated CO2 partial pressure in Populus deltoides. New Phytol. 161: 819–826.10.1111/j.1469-8137.2004.00994.xSuche in Google Scholar PubMed

von Caemmerer S. & Farquhar G.D. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–384.10.1007/BF00384257Suche in Google Scholar PubMed

Walther G.–R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., Fromentin J.–M., Hoegh–Guldberg O. & Bairlein F. 2002. Ecological responses to recent climate change. Nature 416: 389–395.10.1038/416389aSuche in Google Scholar PubMed

Weng J.H., Chen Y.N. & Liao T.S. 2006. Relationships between chlorophyll fluorescence parameters and photochemical reflectance index of tree species adapted to different temperature regimes. Funct. Plant Biol. 33: 241–246.10.1071/FP05156Suche in Google Scholar PubMed

Wertin T.M., Reed S.C. & Belnap J. 2015. C3 and C4 plant responses to increased temperatures and altered monsoonal precipitation in a cool desert on the Colorado Plateau, USA. Oecologia 177: 997–1013.10.1007/s00442-015-3235-4Suche in Google Scholar PubMed

Wu Z., Dijkstra P., Koch G.W., Peñuelas J. & Hungate B.A. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol. 17: 927–942.10.1111/j.1365-2486.2010.02302.xSuche in Google Scholar

Xia J. & Wan S. 2013. Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. Ann. Bot. 111: 1207–1217.10.1093/aob/mct079Suche in Google Scholar PubMed PubMed Central

Yun S.J., Han S., Han S.H., Kim S., Li G.L., Park M. & Son Y. 2016. Short–term effects of warming treatment and precipitation manipulation on the ecophysiological responses of Pinus densiflora seedlings. Turk. J. Agric. For. 40: 621–630.10.3906/tar-1511-68Suche in Google Scholar

Zavaleta E.S., Shaw M.R., Chiariello N.R., Thomas B.D., Cleland E.E., Field C.B. & Mooney H.A. 2003. Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol. Monogr. 73: 585–604.10.1890/02-4053Suche in Google Scholar

Zhang C., Filella I., Garbulsky M.F. & Peñuelas J. 2016. Affecting factors and recent improvements of the photochemical reflectance index (PRI) for remotely sensing foliar, canopy and ecosystemic radiation–use efficiencies. Remote Sens. 8: 677.10.3390/rs8090677Suche in Google Scholar

Abbreviations

A

net photosynthetic rate

D

fraction of light absorbed in PSII antennae that is dissipated thermally

E

transpiration rate

Fv/Fmdawn and Fv/Fmnoon

PSII maximum photochemical efficiency at dawn and at noon, respectively

Fv/Fmdepr

dawn to midday depression of Fv/Fm

Fv’/Fm’

antenna efficiency of PSII

gs

stomatal conductance for water vapor

HeatSum

sum of daily mean temperature values above 5°C for the preceding 28 (F. vaginata, P. alba) or 10 days (C. dactylon)

LD

leaf bulk tissue density

LMA

leaf mass per unit area

LT

leaf thickness

L/W

ratio of leaf length to width

NDVI

leaf normalized difference vegetation index

NPQ

non-photochemical fluorescence quenching

mND

NDVI corrected for leaf structural reflectance

PRI

photochemical reflectance index

qP

photochemical fluorescence quenching

Rainless

length of uninterrupted rainless (≤ 4 mm day−1) period (days; for leaf physiology) or the number of rainless days for the preceding 28 (F. vaginata, P. alba) or 10 days (C. dactylon; for leaf morphology and structure) before field measurement

SWC

topsoil (0–6 cm) volumetric moisture content

Tmin and Tmax

daily minimum and maximum temperature, respectively

VAZ pool

violaxanthin-antheraxanthin-zeaxanthin cycle pigment pool

WUE

instantaneous photosynthetic water use efficiency

ΔPRI

size of VAZ pool

ΦPSII

PSII actual quantum yield at standard irradiance.

Received: 2017-1-20
Accepted: 2017-7-18
Published Online: 2017-12-29
Published in Print: 2017-12-20

© 2017 Institute of Botany, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Botany
  2. Acid rain-induced oxidative stress regulated metabolic interventions and their amelioration mechanisms in plants
  3. Cellular and Molecular Biology
  4. The characterization of a novel bacterial strain capable of microcystin degradation from the Jeziorsko reservoir, Poland: a preliminary study
  5. Cellular and Molecular Biology
  6. Antimicrobial properties of 6-pentyl-α-pyrone produced by endophytic strains of Trichoderma koningii and its effect on aflatoxin B1 production
  7. Cellular and Molecular Biology
  8. Optimization of the biosynthesis of naphthoquinones by endophytic fungi isolated of Ferocactus latispinus
  9. Botany
  10. Relations between tree canopy composition and understorey vegetation in a European beech-sessile oak old growth forest in Western Romania
  11. Botany
  12. Plant ecophysiological responses to drought, nocturnal warming and variable climate in the Pannonian sand forest-steppe: results of a six-year climate manipulation experiment
  13. Botany
  14. Cloning and characterization of Agp1, the gene encoding the small subunit of ADP-glucose pyrophosphorylase from wheat and its relatives
  15. Botany
  16. Effect of NaCl stress on physiological, antioxidant enzymes and anatomical responses of Astragalus gombiformis
  17. Botany
  18. Changes by cadmium stress in lipid peroxidation and activities of lipoxygenase and antioxidant enzymes in Arabidopsis are associated with extracellular ATP
  19. Zoology
  20. Rhynchotalona falcata (Crustacea: Anomopoda: Chydoridae): First recording in Slovakia with notes on its distribution and biology
  21. Zoology
  22. Photoperiod and male-presence effects on the onset of reproduction of Porcellio laevis (Oniscidea)
  23. Zoology
  24. Effects of roads and adjacent areas on diversity of terrestrial isopods of Hungarian highway verges
  25. Zoology
  26. Occurrence of the rare root aphid parasitoid, Aclitus obscuripennis (Hymeoptera: Braconidae: Aphidiinae) in Iran
  27. Zoology
  28. Nucleolar organizer regions, 18S and 5S rDNA clusters in the chromosomes of Piabina argentea (Characiformes: Characidae)
  29. Zoology
  30. Determining the trophic linkage of the red-crowned crane Grus japonensis in Zhalong wetland in northeastern China
  31. Zoology
  32. The specific long spike burst pattern indicates the presence of regional variability in the ovine gallbladder motor function
  33. Cellular and Molecular Biology
  34. The three-dimensional fine structure of the human heart: a scanning electron microscopic atlas for research and education
  35. Zoology
  36. Cambarellus patzcuarensis in Hungary: The first dwarf crayfish established outside of North America
Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2017-0163/html
Button zum nach oben scrollen