Abstract
Meteor crater ponds are extremely rare types of water body and consequently their environment, along with inhabiting fauna, are poorly recognised. We investigated the zooplankton community structure of three meteorite ponds. Their hydroperiod is usually the longest during the spring season, therefore the study-time covered the months between April and June. Within the craters we found 140 zooplankton species, which contributed to 20% of rotifer, 19% of cladoceran, 15% of copepod and 3% of ostracod Polish species. Our results showed a high diversity of zooplankton inhabiting these temporary ecosystems, even though we examined craters before the optimum of macrophyte development, which supports increase of invertebrate species richness. Only 43% of the species were common for all three ponds, although the meteorite craters were located very close to each other, possess the same catchment area and all were fishless. The high specificity of each pond was underlined by a high number of distinctive species (containing almost 30% of the total taxonomic structure). Zooplankton mainly consisted of eurytopic and common species, with representatives of families Brachionidae, Daphnidae and Cyclopidae having the highest frequency. However, over 10% of all species (e.g., Lecane elsa and Tretocephala ambigua) were determined as rare in Poland. Therefore these meteorite ponds are of a high conservation value despite the close proximity of a large urban agglomeration.
Acknowledgements
This work was supported by the Polish Committee for Scientific Research (KBN) under grant no. N N305 042739.
References
Basińska A.M. & Kuczyńska-Kippen N. 2009. Differentiated macrophyte types as a habitat for rotifers in small midforest water bodies. Biologia 64 (6): 1100–1107. 10.2478/s11756-009-0178-4Search in Google Scholar
Brendonck L.1996. Diapause, quiescence, hatching requirements: what we can learn from large freshwater branchiopods (Crustacea: Branchiopoda: Anostraca, Notostraca, Conchostraca). Hydrobiologia 320 (1): 85–97. 10.1007/BF00016809Search in Google Scholar
Caprioli M., Katholm A.K., Melone G., Raml H., Ricci C. & Santo N. 2004. Trehalose in desiccated rotifers: a comparison between a bdelloid and a monogonont species. Comp. Biochem. Physiol.A Mol. Integr. Physiol. 139 (4): 527–532.10.1016/j.cbpb.2004.10.019Search in Google Scholar PubMed
Caprioli M. & Ricci C. 2005. Anhydrobiosis in bdelloid species, populations and individuals. Integr. Comp. Biol. 45 (5): 759–763. 10.1093/icb/45.5.759Search in Google Scholar PubMed
Chaparro G., Kandus P. & O’Farrell I. 2013. Effect of spatial heterogeneity on zooplankton diversity: a multi-scale habitat approximation in a floodplain lake. River Res. Appl. 31 (1): 85–97. 10.1002/rra.2711Search in Google Scholar
Declerck S., De Bie T., Ercken D., Hampel H., Schrijvers S., Van Wichelen J., Gillard V., Mandiki R., Losson B. & Bauwens D. 2006. Ecological characteristic’s of small farmland ponds: Associations with land use practices at multiple spatial scales. Biol. Conserv. 131 (4): 523–532. 10.1016/j.biocon.2006.02.024Search in Google Scholar
De Meester L., Declerck S., Stoks R., Louette G. & Van De Meutter F. 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat. Conserv. 15 (6): 712–725. 10.1002/aqc.748Search in Google Scholar
Ejsmont-Karanin J. & Kuczyńska-Kippen N. 2001. Urban rotifers: structure and densities of rotifers communities in water bodies of the Poznań agglomeration area (western Poland). Hydrobiologia 446/447: 165–171 10.1023/A:10175554 24078Search in Google Scholar
Flössner D.1972. Krebstiere, Crustacea, Kiemen- und Blattfüsser, Branchiopoda, Fischlause, Branchiura. Series: Die Tierwelt Deutschlands und der angrenzenden Meeresteile, no. 60 VEB Gustav Fisher, Verlag, Jena, 501 pp.Search in Google Scholar
Frisch D. & Green A.J. 2007. Copepods come in first: rapid colonization of new temporary ponds. Fund. Appl. Limnol. Arch. Hydrobiol. 168 (4): 289–297. 10.1127/1863-9135/2007/0168-0289Search in Google Scholar
Gliwicz M.Z. 1986. Predation and the evolution of vertical migration in zooplankton. Nature 320: 746–748. 10.1038/320746a0Search in Google Scholar
Green J. 1981. Associations of rotifers in Australian crater lakes. J. Zool. 193 (4): 469–486. 10.1111/j.1469-7998.1981.tb01498.xSearch in Google Scholar
Havens E. & Beaver J.R. 2011. Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia 668 (1): 49–60. 10.1007/s10750-010-0386-5Search in Google Scholar
Hurnik H., Korpikiewicz H. & Kuźmiński H.1976. Distribution of the meteoritic and meteor dust in the region of the fall of the meteorite “Morasko”, pp. 27–37. In: Meteorite Morasko and the region of its fall, Uniwersytet im. Adama Mickiewicza w Poznaniu, Seria Astronomia 2, 63 pp.Search in Google Scholar
Idzikowski B., Kováč J., Diko P., Stankowski W.T.J. & Muszynski A. 2010. Crystalline structure, stoichiometry and magnetic properties of the Morasko meteorite. Acta Phys. Pol.A 118 (5): 1071–1073.10.12693/APhysPolA.118.1071Search in Google Scholar
Iglesias C., Mazzeo N., Meerhoff M., Lacerot G., Clemente J.M., Scasso F., Kruk C., Goyenola G., Garcia-Alonso J., Amsinck S.L., Paggi J.C., de Paggi S.J. & Jeppesen E. 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667 (1): 133–147. 10.1007/s10750-011-0645-0Search in Google Scholar
Iglikowska A. & Namiotko T. 2012. The impact of environmental factors on diversity of Ostracoda in freshwater habitats of subarctic and temperate Europe. Ann. Zool. Fenn. 49 (4): 193–218.10.5735/086.049.0401Search in Google Scholar
Karwowski Ł., Pilski A.S., Muszyński A., Arnold S., Notkin G. & Gurdziel A. 2011. New finds in the Morasko meteorite preserve, Poland. Meteorites 1 (1): 21–28.Search in Google Scholar
Kolicka M., Dziuba M.K., Zawierucha K., Kuczyńska-Kippen N. & Kotwicki L. 2015. Palm house – biodiversity hotspot or risk of invasion? Aquatic invertebrates: The special case of Monogononta (Rotifera) under greenhouse conditions. Biologia 70 (1): 94–103. 10.1515/biolog-2015-0012Search in Google Scholar
Koste W. & Shiel R.J. 1987. Rotifera from Australian inland waters. II. Epihanidae and Brachionidae (Rotifera: Monogononta). Invertebr. Taxon 1 (7): 949–1021. 10.1071/IT9870949Search in Google Scholar
Kuczyńska-Kippen N., Basinska A.M. & Świdnicki K. 2013. Specificity of zooplankton distribution in meteorite crater ponds (Morasko, Poland). Knowl. Manag. Aquat. Ecosyst. 409: 08. 10.1051/kmae/2013053.Search in Google Scholar
KülköylŚoğl O., Dügel M., BalciM., Deveci A., Avuka D. & Kilic M. 2010. Limnoecological relationships between water-level fluctuations and Ostracoda (Crustacea) species composition in Lake Sunnet (Bolu, Turkey). Turk. J. Zool. 34: 429–442. 10.3906/zoo-0904-17Search in Google Scholar
Lampert W., Lampert K.P. & Larsson P. 2010. Coexisting overwintering strategies in Daphnia pulex: A test of genetic differences and growth responses. Limnol. Oceanogr. 55 (5): 1893–1900. 10.4319/lo.2010.55.5.1893Search in Google Scholar
Lampert W. & Sommer U. 2001. Ekologia wód śródladowych [Freshwater Ecology]. Wydawnictwo Naukowe PWN, Warszawa, 389 pp. ISBN: 83-01-11960-8Search in Google Scholar
Lemmens P., Mergeay J., De Bie T., Van Wichelen J., De Meester L. & Declerck S.A. 2013. How to maximally support local and regional biodiversity in applied conservation? Insights from pond management. PloS One 8 (8): e72538. 10.1371/journal.pone.0072538Search in Google Scholar
Lisiewska M. 2006. Endangered macrofungi of selected nature reserves in Wielkopolska. Acta Mycol. 41 (2): 241–252. 10.5586/am.2006.026Search in Google Scholar
Louette G., De Bie T., Vandekerkhove J., Declerck S. & De Meester L. 2007. Analysis of the inland cladocerans of Flanders (Belgium) – Inferring changes over the past 70 years. Belg. J. Zool. 137 (1): 117–123.Search in Google Scholar
Malekzadeh-Viayeh R. & Špoljar M. (2012) Structure of rotifer assemblages in shallow waterbodies of semi-arid northwest Iran differing in salinity and vegetation cover. Hydrobiologia 686 (1): 73–89. 10.1007/s10750-011-0992-xSearch in Google Scholar
Matthews W.J. & Marsh-Matthews E. 2003. Effects of drought on fish across axes of space, time and ecological complexity. Freshwater Biol. 48 (7): 1232–1253. 10.1046/j.1365-2427.2003.01087.xSearch in Google Scholar
Messyasz B.1996. Fitoplankton zbiornikow wodnych połozonych na terenie rezerwatu przyrody Meteoryt Morasko [Phytoplankton of water bodies located in the nature reserve Meteoryt Morasko]. Rocznik Naukowy Polskiego Towarzystwa Ochrony Przyrody Salamandra 01:19–23.Search in Google Scholar
Mori N. & Meisch C. 2012. Contribution to the knowledge on the distribution of Recent free-living ostracods (Podocopida, Ostacoda, Crustacea) in Slovenia. Natura Sloveniae 14 (2): 5–22.Search in Google Scholar
Nkambo M., Bugenyi F.W., Naluwayiro J., Nayiga S., Kiggundu V., Magezi G. & Waswa L. 2015. Planktonic and Fisheries biodiversity of Alkaline Saline crater lakes of Western Ugunda. Biodivers. J. 6 (1): 95–104.Search in Google Scholar
Picazo F., Moreno J.L. & Millán A. 2010. The contribution of standing waters to aquatic biodiversity: the case of water beetles in southeastern Iberia. Aquat. Ecol. 44: 205–216. 10.1007/s10452-009-9279-ySearch in Google Scholar
Pilski A.S., Wasson J.T., Muszyński A., Kryza R., Karwowski L. & Nowak M. 2013. Low-Ir IAB irons from Morasko and other locations in central Europe: One fall, possibly distinct from IAB-MG. Meteoritics Planet Sci. 48 (12): 2531–2541. 10.1111/maps.12225Search in Google Scholar
Pinel-Alloul B. & Mimouni E.A. 2013. Are cladoceran diversity and community structure linked to spatial heterogeneity in urban landscapes and pond environments? Hydrobiologia 715 (1): 195–212. 10.1007/s10750-013-1484-ySearch in Google Scholar
Radwan S., Bielańska-Grajner I. & Ejsmont-Karabin J. 2004. Wrotki Rotifera. Fauna słodkowodna Polski [Rotifers. Polish Freshwater fauna] 32A. Polskie Towarzystwo Hydrobiologiczne, Uniwersytet Łödzki, Oficyna Wydawnicza Tercja, Łödź, 447 pp.Search in Google Scholar
Rybak J.I. & Błędzki L.A. 2010. Słodkowodne skorupiaki planktonowe. Klucz do oznaczania gatunków [Freshwater planktonic crustaceans. Identification guide]. Warszawa: Wydawnictwo Uniwersytetu Warszawskiego, 366 pp. ISBN: 978-83235-1163-210.31338/uw.9788323511632Search in Google Scholar
Schindler D.W. 2000. Aquatic problems caused by human activities in Banff National Park, Alberta, Canada. Ambio 29 (7): 401–407. 10.1579/0044-7447-29.7.401Search in Google Scholar
Schröder T. 2001 Colonising strategies and diapause of planktonic rotifers (Monogononta, Rotifera) during aquatic and terrestrial phases in a floodplain (Lower Oder Valley, Germany). Int. Rev. Hydrobiol. 86 (6): 635–660. 10.1002/1522-2632(200110)86:6<635::AID-IROH635>3.0.CO;2-XSearch in Google Scholar
Semlitsch R.D. & Bodie R. 1998. Are small, isolated wetlands expendable? Conserv. Biol. 12:1129–1133.10.1046/j.1523-1739.1998.98166.xSearch in Google Scholar
Shinde Vinod A. & More S.M. 2013. Study of Physicochemical Characterization of Lonar Lake Effecting Biodiversity Lonar Lake, Maharashtra, India. Int. Res. J. Environment Sci. 2 (12): 25–28.Search in Google Scholar
Smith DG. 2001. Pennak’s freshwater invertebrates of the United States: Porifera to Crustacea. 4th ed. Toronto: John Wiley & Sons, 664 pp. ISBN: 978-0-471-35837-4Search in Google Scholar
Sohar K. & Meidla T. 2010. Changes in the Early Holocene lacustrine environment inferred from the subfossil ostracod record in the Varangu section, northern Estonia. Eston. J. Earth Sci. 59 (3): 195–206. 10.3176/earth.2010.3.02Search in Google Scholar
Stachowiak P. 2002. Badania nad rozsiedleniem Anthribidae (Coleoptera) w Polsce [The study of Anthribidae (Coleoptera) distribution]. Wiad. Entomol. 20 (3-4): 137–142.Search in Google Scholar
Stankowski W.T.J. 2001. The geology and morphology of the natural reserve “Meteoryt Morasko”. Planet Space Sci. 49 (7): 749–753. 10.1016/S0032-0633(01)00011-3Search in Google Scholar
Sywula T.1974. Fauna słodkowodna Polski. Zeszyt 24 Małssoraczki Ostracoda [Polish freshwater fauna. Issue 24. Ostracods]. PWN Polska Akademia Nauk, Instytu Zoologii, Oddziałw Poznaniu, Warszawa – Poznań, 314 pp.Search in Google Scholar
Špoljar M., Dražina T., Habdija I., Meseljević M. & Grečić Z. 2011. Contrasting zooplankton assemblages in two oxbow lakes with low transparencies and narrow emergent macrophyte belts (Krapina River, Croatia). Int. Rev. Hydrobiol. 96 (2): 175–190. 10.1002/iroh.201011257Search in Google Scholar
Špoljar M., Dražina T., Šargač J., Kralj Borojević K. & žutinić P. 2012. Submerged macrophytes as a habitat for zooplankton development in two reservoirs of a flow-through system (Papuk Nature Park, Croatia). Ann. Limnol. – Int. J. Limnol. 48: 161–175. 10.1051/limn/2012005Search in Google Scholar
Špoljar, M., Tomljanović, T., Dražina, T., Lajtner, J., Štulec, H. & Matulić, D. 2016. Zooplankton structure in two interconnected ponds: similarities and differences. Croat. J. Fish. 74 (1): 6–13. 10.1515/cjf-2016-0002Search in Google Scholar
Świdnicki K., Basińska A.M. & Kuczyńska-Kippen N. 2016. Instability of spring environmental conditions as a driver of biotic interactions and crustacean structuring in meteorite crater ponds (Morasko, Poland). Oceanol. Hydrobiol. Stud. 45 (1): 66–78. 10.1515/ohs-2016-0007Search in Google Scholar
Tavernini S., Mura G. & Rossetti G. 2005. Factors influencing the seasonal phenology and composition of zooplankton communities in mountain temporary pools. Int. Rev. Hydrobiol. 90 (4): 358–375. 10.1002/iroh.200510801Search in Google Scholar
Taylor C.M. & Duggan I.C. 2012. Can biotic resistance be utilized to reduce establishment rates of non-indigenous species in constructed waters? Biol. Invasions 14 (2): 307–322. 10.1007/s10530-011-0063-2Search in Google Scholar
Vijverberg J., Dejen E., Gatahun A. & Nagelkerke L.A.J. 2014. Zooplankton, fish communities and the role of planktivory in nine Ethiopian lakes. Hydrobiologia 722 (1): 45–60. 10.1007/s10750-013-1674-7Search in Google Scholar
Wellborn G.A., Skelly D.K. & Werner E.E. 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Syst. 27: 337–363. 10.1146/annurev.ecolsys.27.1.337Search in Google Scholar
Williams D.D. 2002. Temporary water crustaceans: biodiversity and habitat loss, pp. 223–233. In: Escobar-Briones E. & Alvarez F. (eds), Modern Approaches to the Study of Crustacea, Springer, New York, 355 pp. 10.1007/978-1-4615-0761-1.ISBN: 978-1-4615-0761-1Search in Google Scholar
Williams P., Whitfield M., Biggs J., Bray S., Fox G., Nicolet P. & Sear D. 2003.Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115 (2): 329–341. 10.1016/S0006-3207(03)00153-8Search in Google Scholar
© 2016 Institute of Zoology, Slovak Academy of Sciences
Articles in the same Issue
- Cellular and Molecular Biology
- TK1656, an L-asparaginase from Thermococcus kodakarensis, a novel candidate for therapeutic applications
- Botany
- Dynamic change of the rhizosphere microbial community in response to growth stages of consecutively monocultured Rehmanniae glutinosa
- Botany
- Comparative root and stem anatomy of six Clinopodium (Lamiaceae) taxa
- Botany
- The alleviating effects of salicylic acid application against aluminium toxicity in barley (Hordeum vulgare) roots
- Botany
- Recovery capacity of the edible halophyte Crithmum maritimum from temporary salinity in relation to nutrient accumulation and nitrogen metabolism
- Zoology
- Reproductive strategy in rock-dwelling snail Cochlodina orthostoma (Gastropoda: Pulmonata: Clausiliidae)
- Zoology
- Meteorite crater ponds as source of high zooplankton biodiversity
- Zoology
- Diel activity and use of multiple artificially constructed shelters in Astacus leptodactylus (Decapoda: Astacidae)
- Zoology
- Predictions of marbled crayfish establishment in conurbations fulfilled: Evidences from the Czech Republic
- Zoology
- High genetic diversity and a new cryptic species within the Ephedrus persicae species group (Hymenoptera: Braconidae: Aphidiinae)
- Zoology
- Analysis of δ13C and δ15N isotopic signatures to shed light on the hydrological cycle’s influence on the trophic behavior of fish in a Mediterranean reservoir
- Cellular and Molecular Biology
- Role of FIT2 in porcine intramuscular preadipocyte differentiation
Articles in the same Issue
- Cellular and Molecular Biology
- TK1656, an L-asparaginase from Thermococcus kodakarensis, a novel candidate for therapeutic applications
- Botany
- Dynamic change of the rhizosphere microbial community in response to growth stages of consecutively monocultured Rehmanniae glutinosa
- Botany
- Comparative root and stem anatomy of six Clinopodium (Lamiaceae) taxa
- Botany
- The alleviating effects of salicylic acid application against aluminium toxicity in barley (Hordeum vulgare) roots
- Botany
- Recovery capacity of the edible halophyte Crithmum maritimum from temporary salinity in relation to nutrient accumulation and nitrogen metabolism
- Zoology
- Reproductive strategy in rock-dwelling snail Cochlodina orthostoma (Gastropoda: Pulmonata: Clausiliidae)
- Zoology
- Meteorite crater ponds as source of high zooplankton biodiversity
- Zoology
- Diel activity and use of multiple artificially constructed shelters in Astacus leptodactylus (Decapoda: Astacidae)
- Zoology
- Predictions of marbled crayfish establishment in conurbations fulfilled: Evidences from the Czech Republic
- Zoology
- High genetic diversity and a new cryptic species within the Ephedrus persicae species group (Hymenoptera: Braconidae: Aphidiinae)
- Zoology
- Analysis of δ13C and δ15N isotopic signatures to shed light on the hydrological cycle’s influence on the trophic behavior of fish in a Mediterranean reservoir
- Cellular and Molecular Biology
- Role of FIT2 in porcine intramuscular preadipocyte differentiation