Abstract
Nowadays, there has been immense progress in developing materials to support transplanted cells. Nevertheless, the complexity of tissues is far beyond what is found in the most advanced scaffolds. This article reviews the types of biomaterials and their resulting scaffolds in the bio-engineering of bone and tissues by presenting an overview of the characteristics of ideal scaffold in tissue engineering along with types of scaffolds and examples of previous studies where these scaffolds have been applied. The advantages of scaffolds, and the three-dimensional culture system and its used commercially available scaffold is presented. Challenges encountered in the application of these scaffolds in bone and tissue engineering is also highlighted. Used method was by acquisition of materials through Google scholar, Science direct, PubMed and University library archives. Proper knowledge of the above highlighted facts will go a long way in re-addressing the production of scaffolds for bone and tissue engineering. With the proliferation of innovative applications in bioactive glasses and glass ceramics, the greater need for specific understanding of cell biology with emphasis on cellular differentiation, cell to cell interaction and extracellular matrix formation in engineering of bone and tissues becomes inevitable. This will enhance scaffold production, bone regeneration and transplantation outcome.
Acknowledgements
The authors would like to thank Tshwane University of Technology for their total support.
References
Adelöw C., Segura T., Hubbell J. & Frey P. 2008. The effect of enzymatically degradable poly (ethylene glycol) hydrogels on smooth muscle cell phenotype. Biomaterials 29: 314–326.10.1016/j.biomaterials.2007.09.036Suche in Google Scholar PubMed
Agholme L., Lindstrom T., Kagedal K., Marcusson J. & Hallbeck M. 2010. An in vitro model for neuroscience: differentiation of SH-SY5Y cells in cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis. 20: 1069–1082.10.3233/JAD-2010-091363Suche in Google Scholar PubMed
Ahmed T., Dare E. & Hincke M. 2008. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Rev. 14: 199– 215.10.1089/ten.teb.2007.0435Suche in Google Scholar PubMed
Alvarez K., Hyun S.K., Nakano T., Umakoshi Y. & Nakajima H. 2009. In vivo osteocompatibility of Lotus-type porous nickelfree stainless steel in rats. Mater. Sci. Eng. 29: 1182–1190.10.1016/j.msec.2008.09.037Suche in Google Scholar
Ando T., Yamazoe H., Moriyasu K., Ueda Y. & Iwata H. 2007. Induction of dopamine-releasing cells from primate embryonic stem cells enclosed in agarose microcapsules. Tissue Eng. 13: 2539–2547.10.1089/ten.2007.0045Suche in Google Scholar PubMed
Arai K., Iwanaga S., Toda H., Genci C., Nishiyama Y. & Nakamura M. 2011. Three-dimensional inkjet biofabrication based on designed images. Biofabrication 3: 034113.10.1088/1758-5082/3/3/034113Suche in Google Scholar PubMed
Badylak S.F. 2004. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol. 12: 367–377.10.1016/j.trim.2003.12.016Suche in Google Scholar PubMed
Baino F. & Vitale-Brovarone C. 2011. Three-dimensional glassderived scaffolds for bone tissue engineering: current trends and forecasts for the future. J. Biomed. Mater. Res. 97: 514– 535.10.1002/jbm.a.33072Suche in Google Scholar PubMed
Baino F. & Vitale-Brovarone C. 2014. Mechanical properties and reliability of glass-ceramic foam scaffolds for bone repair. Mater. Lett. 118: 27–30.10.1016/j.matlet.2013.12.037Suche in Google Scholar
Baino F., Ferraris M., Bretcanu O., Verné E. & Vitale-Brovarone C. 2013. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. J Biomater. Appl. 27: 872–890.10.1177/0885328211429193Suche in Google Scholar PubMed
Baino F., Marshall M., Kirk N & Vitale-Brovarone C. 2016. Design, selection and characterization of novel glasses and glassceramics for use in prosthetic applications. Ceram. Int. 42: 1482–1491.10.1016/j.ceramint.2015.09.094Suche in Google Scholar
Baino F., Novajra G. & Vitale-Brovarone C. 2015. Bioceramics and scaffolds: a winning combination for tissue engineering. Front. Bioeng. Biotechnol. 3: 202.10.3389/fbioe.2015.00202Suche in Google Scholar
Baino F., Verné E. & Vitale-Brovarone C. 2009. 3-D high strength glass-ceramic scaffolds containing fluoroapatite for load-bearing bone portions replace-ment. Mater. Sci. Eng. 29: 2055–2062.10.1016/j.msec.2009.04.002Suche in Google Scholar
Becerra J., Andrades J.A., Guerado E., Zamora-Navas P., López-Puertas J.M. & Reddi AH. 2010. Articular cartilage: structure and regeneration. Tissue Eng. Part B Rev. 16: 617.10.1089/ten.teb.2010.0191Suche in Google Scholar
Berkland C., King M., Cox A., Kim K. & Pack D.W. 2002. Precise control of PLG microsphere size provides enhanced control of drug release rate. J. Cont. Rel. 82: 137–147.10.1016/S0168-3659(02)00136-0Suche in Google Scholar
Bhattarai S.R., Bhattarai N., Yi H.K., Hwang P.H., Cha D.I. & Kim H.Y. 2006. Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25: 2595–2602.10.1016/j.biomaterials.2003.09.043Suche in Google Scholar PubMed
Chen J., Xu J., Wang A. & Zheng M. 2009. Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev. Med. Devices 6: 61–73.10.1586/17434440.6.1.61Suche in Google Scholar PubMed
Chen Q., Baino F., Spriano S., Pungno N.M. & Vitale-Brovarone C. 2014. Modelling of strength-porosity relationship in glassceramic foam scaffolds for bone repair. J. Eur. Ceram. Soc. 34: 2663–2673.10.1016/j.jeurceramsoc.2013.11.041Suche in Google Scholar
Chen Q. & Huang S. 2013. Mechanical properties of a porous bio-scaffold with hierarchy. Mater Lett. 95: 89–92.10.1016/j.matlet.2012.12.071Suche in Google Scholar
Chiu Y., Larson J., Isom A. & Brey E. 2010. Generation of porous poly (ethylene glycol) hydrogels by salt leaching. Tissue Eng. Part C Methods 16: 905–912.10.1089/ten.tec.2009.0646Suche in Google Scholar PubMed
Chung K., Mishra N., Wang C., Lin F. & Lin K. 2009. Fabricating scaffolds by microfluidics. Biomicrofluidics 3: 22403.10.1063/1.3122665Suche in Google Scholar PubMed PubMed Central
Dhaliwal A. 2012. A comprehensive review of methods for 3D cell culture. Mater Methods 2: 162.10.13070/mm.en.2.162Suche in Google Scholar
Discher D.E., Mooney D.J. & Zandstra P.W. 2009. Growth factors, matrices, and forces combine and control stem cells. Science 324: 1673–1677.10.1126/science.1171643Suche in Google Scholar PubMed PubMed Central
Dmitriev R.I., Borisov S.M., Kondrashina A.V., Pakan J.M.P., Anilkumar U., Prehn J.H.M., Zhdanov A.V., McDermott K.W., Klimant I., Papkovsky D.B. 2015. Imaging oxygen in neural cell and tissue models by means of anionic cell permeable phosphorescent nanoparticles. Cell. Mol. Life Sci. 72: 367–381.10.1007/s00018-014-1673-5Suche in Google Scholar PubMed
Dolega M.E., Abeille F., Picollet-D’hahan N. & Gidrol X. 2015. Controlled 3D culture in Matrigel microbeads to analyse clonal acinar. Biomaterials 52: 347–357.10.1016/j.biomaterials.2015.02.042Suche in Google Scholar PubMed
Engler A.J., Sen S., Sweeney H.L. & Discher D.E. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126: 677–689.10.1016/j.cell.2006.06.044Suche in Google Scholar PubMed
Erol-Taygun M., Zheng K. & Boccaccini A.R. 2013. Nanoscale bioactive glasses in medical applications. Int. J. Appl. Glass Sci. 4: 136–148.10.1111/ijag.12029Suche in Google Scholar
Fernandes H., Mentink A., Bank R., Stoop R., van Blitterwijk C. & de Boer J. 2010. Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells. Tissue Eng. 16: 1693–1702.10.1089/ten.tea.2009.0341Suche in Google Scholar
Fielding G.A., Bandyopadhyay A. & Bose S. 2012. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent. Mater. 28: 113–122.10.1016/j.dental.2011.09.010Suche in Google Scholar PubMed PubMed Central
Finger A.R., Sargent C.Y., Dulaney K.O., Bernacki S.H. & Loboa E.G. 2007. Differential effects on messenger ribonucleic acid expression by bone marrow-derived human mesenchymal stem cells seeded in agarose constructs due to ramped and steady applications of cyclic hydrostatic pressure. Tissue Eng. 13: 1151–1158.10.1089/ten.2006.0290Suche in Google Scholar PubMed
Fiorilli S., Baino F., Cauda V., Crepald M. & Vitale-Brovarone C. 2015. Electrophoretic deposition of mesoporous bioactive glass-ceramic foam scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 26: 21.10.1007/s10856-014-5346-6Suche in Google Scholar PubMed
Fischer S.N., Johnson J.K., Baran C.P., Newland C.A., Marsh C.B. & Lannutti J.J. 2011. Organ-derived coatings on electrospun nanofibers as ex vivo microenvironments. Biomaterials 32: 538–546.10.1016/j.biomaterials.2010.08.104Suche in Google Scholar PubMed PubMed Central
Fu Q., Saiz E., Rahaman M.N. & Tomsia A.P. 2011. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater. Sci. Eng. 31: 1245–1256.10.1016/j.msec.2011.04.022Suche in Google Scholar PubMed PubMed Central
Fuchs S., Jiang X., Schmidt H., Dohle E., Ghanaati S. & Orth C. 2009. Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials 30: 1329–1338.10.1016/j.biomaterials.2008.11.028Suche in Google Scholar PubMed
Gao C., Deng Y., Feng P., Mao Z., Li P. & Yang B. 2014. Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int. J. Mol. Sci. 15: 4714–4732.10.3390/ijms15034714Suche in Google Scholar PubMed PubMed Central
Garcia A., Izquierdo-Barba I., Colilla M., Laorden C. & Vallet-Regi M. 2013 Preperation of 3-D scaffolds in the SiO2-P2O5 system with tailored hierarchical mesomacroporosity. Acta Biomater. 7: 1265–1273.10.1016/j.actbio.2010.10.006Suche in Google Scholar PubMed
Ge Z., Jin Z. & Cao T. 2008. Manufacture of degradable polymeric scaffolds for bone regeneration. Biomed. Mater. 3: 022001.10.1088/1748-6041/3/2/022001Suche in Google Scholar PubMed
Gerhardt L.C. & Boccaccini A.R. 2010. Bioactive glass and glassceramic scaffolds for bone tissue engineering. Materials 3: 3867–3910.10.3390/ma3073867Suche in Google Scholar PubMed PubMed Central
Guggisberg S., Benneker L.M., Keel M.J. & Gantenbein B. 2015. Mechanical loading promoted discogenic differentiation of human mesenchymal stem cells incorporated in 3D PEG scaffolds with rhGDF5 and RGD. Int. J. Stem Cell Res. Ther. 2: 1.10.23937/2469-570X/1410006Suche in Google Scholar
Hadjipanayi E., Mudera V. & Brown R. 2009. Guiding cell migration in 3D: a collagen matrix with graded directional stiffness. Cell. Motil. Cytoskeleton 66: 121–128.10.1002/cm.20331Suche in Google Scholar PubMed
He L., Liu B., Xipeng G., Xie G., Liao S., Quan D., Cai D., Lu J. & Ramakrishna S. 2009. Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering. Eur. Cell. Mater. 18: 63–74.10.22203/eCM.v018a06Suche in Google Scholar PubMed
Hofmann S., Hagenmuller H., Koch A.M., Muller R., Vunjak-Novakovic G., Kaplan D.L., Merkle H.P. & Meinel L. 2007. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials 28: 1152–1162.10.1016/j.biomaterials.2006.10.019Suche in Google Scholar PubMed
Huang Y., Ren J., Chen C., Ren T. & Zhou X. 2008. Preparation and properties of poly (lactide-co-glycolide)(PLGA)/nanohydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J. Biomater. Appl. 22: 409–432.10.1177/0885328207077632Suche in Google Scholar PubMed
Hutmacher D.W. 2001. Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspective. J. Biomater. Sci. 12: 107–124.10.1163/156856201744489Suche in Google Scholar PubMed
Jacobs J.J., Skipor A.K., Patterson L.M., Hallab N.J., Paprosky W.G., Black J. & Galante J.O. 1998. Metal release in patients who have had a primary total hip arthroplasty. J. Bone Joint Surg. Am. 80: 1447–1458.10.2106/00004623-199810000-00006Suche in Google Scholar PubMed
Jaklenec A., Hinckfuss A., Bilgen B., Ciombor D.M., Aaron R. & Mathiowitz E. 2008. Sequential release of bioactive IGF-I and TGF-β1 from PLGA microsphere-based scaffolds. Biomaterials 29: 1518–1525.10.1016/j.biomaterials.2007.12.004Suche in Google Scholar PubMed
Kaihara S., Matsumura S. & Fisher J.P. 2008. Synthesis and characterization of cyclic acetal based degradable hydrogels. Eur. J. Pharm. Biopharm 68: 67–73.10.1016/j.ejpb.2007.05.019Suche in Google Scholar PubMed
Kang S. & Bae Y. 2009. Cryopreservable and tumorigenic threedimensional tumor culture in porous poly (lactic-co-glycolic acid) microsphere. Biomaterials 30: 4227–4232.10.1016/j.biomaterials.2009.04.025Suche in Google Scholar PubMed PubMed Central
Keshaw H., Georgiou G., Blaker J.J., Forbes A. & Knowles J.C. 2009. Assessment of polymer/bioactive glass-composite microporous spheres for tissue regeneration applications. Tissue Eng. 15: 1451–1461.10.1089/ten.tea.2008.0203Suche in Google Scholar PubMed
Kim S.S., Park M.S., Jeon O., Choi C.Y. & Kim B.S. 2006. Poly (lactide-co-lycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27: 1399–1409.10.1016/j.biomaterials.2005.08.016Suche in Google Scholar PubMed
Kohlhauser C., Hellmich C., Vitale-Brovarone C., Boccaccini AR., Rota A. & Eberhardsteiner J. 2009. Ultrasonic characterisation of porous biomaterials across different frequencies. Strain 45: 34–44.10.1111/j.1475-1305.2008.00417.xSuche in Google Scholar
Kopp A., Strobel S., Tortajada A., De Cordoba S.R., Sanchez-Corral P., Prohaszka Z., Lopez-Trascasa M. & Jozsi M. 2012. A typical hemolytic uremic syndrome associated variants and auto-antibodies impair binding of factor H and factor H related protein 1 to pentraxin 3. J. Immunol. 189: 1858–1867.10.4049/jimmunol.1200357Suche in Google Scholar
Lacroix D., Chateau A., Ginebra M.P. & Planell J. A. 2006. Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27: 5326–5334.10.1016/j.biomaterials.2006.06.009Suche in Google Scholar
Leigh S., Gilbert H., Barker I., Becker J., Richardson S., Hoyland J., Covington J. & Dove A. 2013. Fabrication of 3-dimensional cellular constructs via microstereolithography using a simple, three-component, poly (ethylene glycol) acrylate-based system. Biomacromolecules 14: 186–192.10.1021/bm3015736Suche in Google Scholar
Liu C., Xia Z. & Czernuszka J.T. 2007. Design and development of three-dimensional scaffolds for tissue engineering. Chem. Eng. Res. Des. 85: 1051–1064.10.1205/cherd06196Suche in Google Scholar
Loh Q.L. & Choong C. 2013. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. 19: 485–502.10.1089/ten.teb.2012.0437Suche in Google Scholar
Ma P.X. 2006. Scaffolds for tissue fabrication. Mater. Today 7: 30–40.10.1016/S1369-7021(04)00233-0Suche in Google Scholar
Ma P.X. & Zhang R. 2001. Microtubular architecture of biodegradable polymer scaffolds. J. Biomed. Mater. Res. 56: 469–477.10.1002/1097-4636(20010915)56:4<469::AID-JBM1118>3.0.CO;2-HSuche in Google Scholar
Malafaya P.B., Pedro A.J., Peterbauer A., Gabrie C., Redl H. & Reis R.L. 2005. Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J. Mater. Sci. 16: 1077–1085.10.1007/s10856-005-4709-4Suche in Google Scholar
Malafaya P.B., Silva G.A. & Reis R.L. 2007. Natural origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering application. Adv. Drug Deliv. Rev. 59: 207–233.10.1016/j.addr.2007.03.012Suche in Google Scholar
Manoto S.L., Houreld N.N. & Abrahamse H. 2015. Resistance of lung cancer cells grown as multicellular tumour spheroids to zinc sulfophthalocyanine photosensitization. Int. J. Mol. Sci. 16: 10185–10200.10.3390/ijms160510185Suche in Google Scholar
Mathes S.H., Wohlwend L., Uebersax L., Von Mentlen R., Thoma D.S. & Jung R.E. 2010. A bioreactor test system to mimic the biological and mechanical environment or oral soft tissues and to evaluate substitutes for connective tissue grafts. Biotechnol. Bioeng. 107: 1029–1039.10.1002/bit.22893Suche in Google Scholar
Miguez-Pacheco V., Greenspan D., Hench L. L. & Boccaccini A. R. 2015. Bioactive glasses in soft tissue repair. Am. Ceram. Soc. Bull. 94: 27–31.Suche in Google Scholar
Miguez-Pacheco V, Hench L.L. & Boccaccini A.R. 2015. Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 13: 1–15.10.1016/j.actbio.2014.11.004Suche in Google Scholar
Motaung C.K.M., Cesare P.E. & Reddi H. 2011. Differential response of cartilage oligomeric matrix protein (COMP) to morphogens of bone morphogenetic protein/transforming growth factor-β family in the surface, middle and deep zones of articular cartilage. J. Tissue Eng. Regen. Med. 5: 87–96.10.1002/term.358Suche in Google Scholar
Natesan S., Baer D., Walters T., Babu M. & Christy R. 2010. Adipose-derived stem cell delivery into collagen gels using chitosan microspheres. Tissue Eng. 16: 1369–1384.10.1089/ten.tea.2009.0404Suche in Google Scholar
Nicholas J.E., Niles J., Riddle M., Vegas G., Schilagard T., Ma L., Edward K., La Francesca S., Sakamoto J., Vega S., Ogadegbe M., Mlcak R., Deyo D., Woodson L., McQuitty C., Lick S., Beckles D., Melo E. & Cortiella J. 2013. Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng. 19: 2045–2062.10.1089/ten.tea.2012.0250Suche in Google Scholar
Nugraha B., Hong X., Mo X., Tan L., Zhang W., Chan P.M. Kang C.H., Wang Y., Beng L.T., Sun W., Choudhury D., Robens J.M., McMillian M., Silva J., Dallas S., Tan C.H., Yue Z., Yu H. 2011. Galactosylated cellulosic sponge for multi well drug safety testing. Biomaterials. 32: 6982–6994.10.1016/j.biomaterials.2011.05.087Suche in Google Scholar
O’Brien F.J. 2011. Biomaterials and scaffolds for tissue engineering. Mater. Today 14: 88–95.10.1016/S1369-7021(11)70058-XSuche in Google Scholar
Raghunath J., Rollo J., Sales K.M., Butler P.E. & Seifalian A.M. 2007. Biomaterials and scaffold design: key to tissueengineering cartilage. Biotechnol. Appl. Biochem. 46: 73–84.10.1042/BA20060134Suche in Google Scholar PubMed
Renghini C., Giuliani A., Mazzoni S., Brun F., Larsson E., Baino F., Vitale-Brovarone C. 2013. Microstructural characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by synchrotron radiation Xraymicrotomography. J. Eur. Ceram. Soc. 33: 1553–1565.10.1016/j.jeurceramsoc.2012.10.016Suche in Google Scholar
Renghini C., Komlev V., Fiori F., Verné E., Baino F., Vitale-Brovarone C. 2009. Micro-CT studies on 3-D bioactive glassceramic scaffolds for bone regeneration. Acta Biomater. 5: 1328–1337.10.1016/j.actbio.2008.10.017Suche in Google Scholar PubMed
Renier D., Bellato P., Bellini D., Pavesio A., Pressato D. & Borrione A. 2007. Pharmacokinetic behaviour of ACP gel, an autocrosslinked hyaluronan derivative, after intraperitoneal administration. Biomaterials 26: 5368–5374.10.1016/j.biomaterials.2005.01.053Suche in Google Scholar PubMed
Rihmann M. & Graf-Hausner U. 2012. Synthetic 3D multicellular systems for drug development. Curr. Opin. Biotechnol. 23: 1–7.10.1016/j.copbio.2012.01.011Suche in Google Scholar PubMed
Sabree I., Gough J.E. & Derby B. 2015. Mechanical properties of porous ceramic scaffolds: influence of internal dimensions. Ceram. Int. 41: 8425–8432.10.1016/j.ceramint.2015.03.044Suche in Google Scholar
Salerno A., Guarnieri D., Iannone M., Zeppetelli S. & Netti P. 2010. Effect of micro- and macroporosity of bone tissue threedimensionalpoly (epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro. Tissue Eng. 16: 2661–2673.10.1089/ten.tea.2009.0494Suche in Google Scholar PubMed
Sanz-Herrera J.A., Garcia-Aznar J.M. & Doblaré M. 2008. A mathematical model for bone tissue regeneration inside a specific type of scaffold. Biomech. ModelMechanobiol. 7: 355–66.10.1007/s10237-007-0089-7Suche in Google Scholar PubMed
Saw K.Y., Anz A., Siew-Yoke J.C., Mericans S., Ching-Song R., Roohi S.A. & Ragavanaidu K. 2013. Articular Cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy 29: 684–694.10.1016/j.arthro.2012.12.008Suche in Google Scholar PubMed
Scheiner S., Sinibaldi R., Pichler B., Komlev V., Renghini C., Vitale-Brovarone C., Rustichelli F. & Hellmich C. 2009. Micromechanics of bone tissue-engineering scaffolds based on resolution error-cleared computer tomography. Biomaterials 30: 2411–2419.10.1016/j.biomaterials.2008.12.048Suche in Google Scholar PubMed
Sieminski A.L., Semino C.E., Gong H. & Kamm R.D. 2008. Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis. J. Biomed. Mater. Res. A 87: 494–504.10.1002/jbm.a.31785Suche in Google Scholar PubMed
Sierad L., Simionescu A., Albers C., Chen J., Maivelett J., Tedder M., Liao J. & Simionescu D.T. 2010. Design and testing of a pulsatile conditioning system for dynamic endothelialization of polyphenol-stabilized tissue engineered heart valves. Cardiovasc. Eng. Technol. 1: 138–153.10.1007/s13239-010-0014-6Suche in Google Scholar PubMed PubMed Central
Smith S.J., Wilson M., Ward J.H., Rahman C.V., Peet A.C., Macarthur D.C., Rose F.R., Grundy R.G. & Rahman R. 2012. Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition. PLoS One 7: e52335.10.1371/journal.pone.0052335Suche in Google Scholar PubMed PubMed Central
Souza G., Molina J., Raphael R., Ozawa M., Stark D., Levin C., Bronk L.F., Ananta J.S., Mandelin J. & Georgescu M.M. 2010. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5: 291–296.10.1038/nnano.2010.23Suche in Google Scholar PubMed PubMed Central
Tancret F., Bouler J.M., Chamousset J. & Minois L.M. 2006. Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. J. Eur. Ceram. Soc. 26: 3647–3656.10.1016/j.jeurceramsoc.2005.12.015Suche in Google Scholar
Thein-Han W.W. & Misra R.D.K. 2009. Biomimetic chitosannanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 5: 1182–1197.10.1016/j.actbio.2008.11.025Suche in Google Scholar PubMed
Tran R., Naseri E., Kolasnikov A., Bai X. & Yang J. 2011. A new generation of sodium chloride porogen for tissue engineering. Biotechnol. Appl. Biochem. 58: 335–344.10.1002/bab.44Suche in Google Scholar PubMed
Uematsu K., Hattori K., Ishimoto Y., Yamauchi J., Habata T., Takakura Y., Ohgushi H., Fukuchi T. & Sato M. 2005. Cartilage regeneration using mesenchymal stem cells and a threedimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 26: 4273–4279.10.1016/j.biomaterials.2004.10.037Suche in Google Scholar PubMed
Vitale-Brovarone C., Baino F., Tallia F., Gervasio C. & Verné E. 2012. Bioactive glass-derived trabecular coating: a smart solution for enhancing oste-ointegration of prosthetic elements. J. Mater. Sci. Mater. Med. 23: 2369–2380.10.1007/s10856-012-4643-1Suche in Google Scholar PubMed
Vitale-Brovarone C., Baino F. & Verné E. 2009. High strength bioactive glass-ceramic scaffolds for bone regeneration. J. Mater. Sci. Mater. Med. 20: 643–53.10.1007/s10856-008-3605-0Suche in Google Scholar PubMed
Vitale-Brovarone C., Verné E., Robiglio L., Appendino P., Bassi F. & Martinasso G., Muzio G. & Canuto R. 2007. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomater. 3: 199–208.10.1016/j.actbio.2006.07.012Suche in Google Scholar PubMed
Wang H., Mullins M., Cregg J., McCarthy C. & Gilbert R. 2010. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater. 6: 2970–2978.10.1016/j.actbio.2010.02.020Suche in Google Scholar PubMed
Wang Y., Kim U.J., Blasioli D.J., Kim H.J. & Kaplan D.L. 2005. In vitro cartilage tissue engineering with 3D porous aqueousderived silk scaffolds and mesenchymal stem cells. Biomaterials 26: 7082–7094.10.1016/j.biomaterials.2005.05.022Suche in Google Scholar PubMed
Watanabe K., Nakamura Okano H. & Toyama Y. 2007. Establishment of three-dimensional culture of neural stem/progenitor cells in collagen Type-1 Gel. Restor. Neurol. Neurosci. 25: 109–117.Suche in Google Scholar
Wu S., Liu Y., Bharadwaj S., Atala A. & Zhang Y. 2011a. Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials 32: 1317–1326.10.1016/j.biomaterials.2010.10.006Suche in Google Scholar PubMed
Wu C., Luo Y., Cuniberti G., Xiao Y. & Gelinsky M. 2011b. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization. Acta Biomater. 7: 2644–2650.10.1016/j.actbio.2011.03.009Suche in Google Scholar PubMed
Wu C., Zhang Y., Zhu Y., Friis T. & Xiao Y. 2010. Structureproperty relationships of silk modified mesoporous bioglass scaffolds. Biomaterials 31: 3429–3438.10.1016/j.biomaterials.2010.01.061Suche in Google Scholar PubMed
Yan X., Yu C., Zhou X., Tang J. & Zhao D. 2004. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. Engl. 43: 5980–5984.10.1002/anie.200460598Suche in Google Scholar PubMed
Yeong W., Sudarmadji N., Yu H., Chua C., Leong K., Venkatraman S., Boey Y. & Tan L. 2010. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 6: 2028–2034.10.1016/j.actbio.2009.12.033Suche in Google Scholar PubMed
Zhao J., Han W., Chen H., Tu M., Huan S., Miao G. Zeng R, Wu H, Cha Z. & Zhou C. 2011. Fabrication and in vivo osteogenesis of biomimetic poly (propylene carbonate) scaffold with nanofibrous chitosan network in macropores for bone tissue engineering. J. Mater. Sci. Mater. Med. 23: 517–525.10.1007/s10856-011-4468-3Suche in Google Scholar PubMed
Zhu X., Lee L., Jackson J., Tong Y. & Wang C. 2008. Characterization of porous poly (D, L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Biotechnol. Bioeng. 100: 998–1009.10.1002/bit.21824Suche in Google Scholar PubMed
- Abbreviations
- 3D
three-dimensional
- ASTM
American Society for Testing Material
- BG
bioactive glass
- CAD
computer-aided design
- ECM
extracellular matrix
- GlcN
D-glucosamine
- GlcNAc
N-acetyl-D-glucosamine
- HAP
hydroxyapatite
- Hep3B
human hepatoma 3B cells
- m-BG
micron-sized bioactive glass
- MBG
mesoporous bioactive glass
- MSCs
mesenchymal stem cells
- n-BG
nano-sized bioactive glass
- OPF
oligo-poly glycol-fumarate
- PBT
polybutylene terephthalate
- PCL
poly-∊-caprolactone
- PDLLA
poly-D-L-lactide
- PEG
polyethylene glycol
- PGA
poly-glycolide
- PLA
poly-lactic acids
- PLGA
poly-lactic-co-glycolic acid
- PLLA
poly-L-lactic acid
- PPC
polypropylene carbonate
- PVA
polyvinyl alcohol
- SIS
small intestinal sub-mucosa
- TCP
tricalcium phosphate
- TGF-β1
transforming growth factor beta 1
- VEGF
vascular endothelial growth factor
© 2016 Institute of Molecular Biology, Slovak Academy of Sciences
Artikel in diesem Heft
- Research Article
- Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering
- Research Article
- Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review
- Research Article
- Pseudomonas aeruginosa strain BUP2, a novel bacterium inhabiting the rumen of Malabari goat, produces an efficient lipase
- Research Article
- New mycelial lectins from penicilli with complex carbohydrate specificity
- Research Article
- Phylogenetic analysis of Leymus (Poaceae: Triticeae) based on random amplified polymorphic DNA
- Research Article
- Ascorbic acid alleviates water deficit induced growth inhibition in wheat seedlings by modulating levels of endogenous antioxidants
- Research Article
- Molecular cloning of HMW glutenin subunits from Roegneria kamoji (Poaceae: Triticeae)
- Research Article
- New faunistic and taxonomic data on oribatid mites (Acari: Oribatida) of Vietnam
- Research Article
- The genus Monoschelobates (Acari: Oribatida: Scheloribatidae)
- Research Article
- Analysis of larval antigens of Cephalopina titillator in the camel mucus for diagnosis of infestation
- Research Article
- Changes in food availability mediate the effects of temperature on growth, metamorphosis and survival in endangered yellow spotted mountain newt: implications for captive breeding programs
- Research Article
- Dependence of clutch predation rate of Eurasian reed warbler Acrocephalus scirpaceus on nesting site selection: A model study
Artikel in diesem Heft
- Research Article
- Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering
- Research Article
- Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review
- Research Article
- Pseudomonas aeruginosa strain BUP2, a novel bacterium inhabiting the rumen of Malabari goat, produces an efficient lipase
- Research Article
- New mycelial lectins from penicilli with complex carbohydrate specificity
- Research Article
- Phylogenetic analysis of Leymus (Poaceae: Triticeae) based on random amplified polymorphic DNA
- Research Article
- Ascorbic acid alleviates water deficit induced growth inhibition in wheat seedlings by modulating levels of endogenous antioxidants
- Research Article
- Molecular cloning of HMW glutenin subunits from Roegneria kamoji (Poaceae: Triticeae)
- Research Article
- New faunistic and taxonomic data on oribatid mites (Acari: Oribatida) of Vietnam
- Research Article
- The genus Monoschelobates (Acari: Oribatida: Scheloribatidae)
- Research Article
- Analysis of larval antigens of Cephalopina titillator in the camel mucus for diagnosis of infestation
- Research Article
- Changes in food availability mediate the effects of temperature on growth, metamorphosis and survival in endangered yellow spotted mountain newt: implications for captive breeding programs
- Research Article
- Dependence of clutch predation rate of Eurasian reed warbler Acrocephalus scirpaceus on nesting site selection: A model study