Abstract
In this study, a keratinolytic protease gene (named as kerD) from Aspergillus niger was cloned. The full-length coding sequence of kerD consists of 1,251 bp and encodes a protein with 416 amino acid residues with a molecular mass of 43,831 Da. A DNA fragment encoding mature kerD without its signal sequence was inserted into the expression vector pET30a(+) and successfully expressed in Escherichia coli. The recombinant protein was purified to approximately 100% purity using Ni-IDA affinity chromatography, and identified by Western blot. The recombinant enzyme had an optimal pH of 8.0 and was stable at pH 7.0-9.0. It exhibited an optimal temperature for activity of 70 °C and was stable at 30-50 °C. It was highly inhibited by 1,10-phenanthroline, ethylenediaminetetraacetic acid and sodium dodecyl sulphate, but activated by phenylmethanesulfonyl fluoride, Mg2+, Fe2+, Mn2+, Cu2+, Zn2+, Ca2+, dithiothreitol, Triton X-100, dimethyl sulfoxide and isopropyl alcohol. The recombinant enzyme could hydrolyse a broad range of protein substrates.
References
Ali T.H., Ali N.H. & Mohamed L.A. 2011. Purification and some properties of extracellular keratinase from feathersdegradation by Aspergillus oryzae NRRL-447. J. Appl. Sci. Environ. Sanit. 6: 123-136.Suche in Google Scholar
Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.10.1016/S0022-2836(05)80360-2Suche in Google Scholar
Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2013. GenBank. Nucleic Acids Res. 41: D36-D42.10.1093/nar/gks1195Suche in Google Scholar
Brandelli A., Daroit D.J. & Riffel A. 2010. Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 85: 1735-1750.10.1007/s00253-009-2398-5Suche in Google Scholar
Cai C., Chen J., Qi J., Yin Y. & Zheng X. 2008. Purification and characterization of keratinase from a new Bacillus subtilis strain. J. Zhejiang Univ. Sci. B 9: 713-720.10.1631/jzus.B0820128Suche in Google Scholar
Chen K.N., Huang J.C., Chung C.I., Kuo W.Y. & Chen M.J. 2011. Identification and characterization of H10 enzymes isolated from Bacillus cereus H10 with keratinlytic and proteolytic activities. World J. Microbiol. Biotechnol. 27: 349-358.10.1007/s11274-010-0465-9Suche in Google Scholar
Farag A.M. & Hassan M.A. 2004. Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme Microb. Technol. 34: 85-93.Suche in Google Scholar
Fraser R.D.B. & Parry D.A.D. 2008. Molecular packing in the feather keratin filament. J. Struct. Biol. 162: 1-13.10.1016/j.jsb.2008.01.011Suche in Google Scholar
Gradišar H., Friedrich J., Križaj I. & Jerala R. 2005. Similarities and specificities of fungal keratinolytic proteases: comparison of keratinase of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl. Environ. Microbiol. 71: 3420-3426.10.1128/AEM.71.7.3420-3426.2005Suche in Google Scholar
Gupta R. & Ramnani P. 2006. Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotechnol. 70: 21-33.10.1007/s00253-005-0239-8Suche in Google Scholar
Jarai G., Kirchherr D. & Buxton F.P. 1994. Cloning and characterization of the pepD gene of Aspergillus niger which codes for a subtilisin-like protease. Gene 139: 51-57.10.1016/0378-1119(94)90522-3Suche in Google Scholar
Jayalakshmi T., Krishnamoorthy P., Ramesh Kumar G. & Sivamani P. 2010. Isolation and screening of a feather-degrading keratinoltic actinomycetes from Actinomyces sp. J. Am. Sci. 6: 45-48.Suche in Google Scholar
Jayani R., Saxena S. & Gupta R. 2005. Microbial pectinolytic enzymes: a review. Process Biochem. 40: 2931-2944.10.1016/j.procbio.2005.03.026Suche in Google Scholar
Kolattukudy P.E., Lee J.D., Rogers L.M., Zimmerman P., Ceselski S., Fox B., Stein B. & Copelan E.A. 1993. Evidence for possible involvement of an elastolytic serine protease in aspergillosis. Infect. Immun. 61: 2357-2368.10.1128/iai.61.6.2357-2368.1993Suche in Google Scholar
Lin X., Lee C.G., Casale E.S. & Shih J.C.H. 1992. Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Appl. Environ. Microbiol. 58: 3271-3275.10.1128/aem.58.10.3271-3275.1992Suche in Google Scholar
Lopes F.C., Silva L.A., Tichota D.M., Daroit D.J., Velho R.V., Pereira J.Q., Correa A.P. & Brandelli A. 2011. Production of proteolytic enzymes by a keratin-degrading Aspergillus niger. Enzyme Res. 2011: 487093.10.4061/2011/487093Suche in Google Scholar
Mazotto A.M., Couri S., Damaso M.C.T. & Vermelho A.B. 2013. Degradation of feather waste by Aspergillus niger keratinases: comparison of submerged and solid-state fermentation. Int. Biodeter. Biodegr. 85: 189-195.10.1016/j.ibiod.2013.07.003Suche in Google Scholar
Mazotto A.M., de Melo A.C.N., Macrae A., Rosado A.S., Peixoto R., Cedrola S.M.L., Couri S., Zingali R.B., Villa A.L.V., Rabinovitch L., Chaves J.Q. & Vermelho A.B. 2011. Biodegradation of feather waste by extracellular keratinases and gelatinases from Bacillus spp. World J. Microbiol. Biotechnol. 27: 1355-1365.10.1007/s11274-010-0586-1Suche in Google Scholar
Mitsuiki S., Ichikawa M., Oka T., Sakai M., Moriyama Y., Sameshima Y., Goto M. & Furukawa K. 2004. Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. EnzymeMicrob. Technol. 34: 482-489.10.1016/j.enzmictec.2003.12.011Suche in Google Scholar
Noronha E.F., de Lima B.D., de Sá C.M. & Felix C.R. 2002. Heterologous production of Aspergillus fumigatus keratinae in Pichia pastoris. World J. Microbiol. Biotechnol. 18: 563-568.10.1023/A:1016341702908Suche in Google Scholar
Odetallah N.H., Wang J.J., Garlich J.D. & Shih J.C.H. 2005.Suche in Google Scholar
Versazyme supplementation of broiler diets improves market growth performance. Poultry Sci. 84: 858-864.10.1093/ps/84.6.858Suche in Google Scholar
Onifade A.A., Al-Sane N.A., Al-Musallam A.A. & Al-Zarban S. 1998. A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour. Technol. 66: 1-11.10.1016/S0960-8524(98)00033-9Suche in Google Scholar
Radha S. & Gunasekaran P. 2009. Purification and characterization of keratinase from recombinant Pichia and Bacillus strains. Protein Expr. Purif. 64: 24-31.10.1016/j.pep.2008.10.008Suche in Google Scholar PubMed
Riffel A., Brandelli A., Bellaro C.M., Souza G.H.M., Eberlin M.N. & Tavarez F.C.A. 2007. Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kR6. J. Biotechnol. 128: 693-703.10.1016/j.jbiotec.2006.11.007Suche in Google Scholar PubMed
Riffel A., Lucas F., Heeb P. & Brandelli A. 2003. Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch. Microbiol. 179: 258-265.10.1007/s00203-003-0525-8Suche in Google Scholar PubMed
Rodriguez-Couto S. 2008. Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnol. J. 3: 859-870.10.1002/biot.200800031Suche in Google Scholar PubMed
Ruijter G.J.G., Kubicek C.P. & Visser J. 2002. Production of organic acids by fungi, pp. 213-230. In: Osiewacz H.D. (ed.) The Mycota X, Springer-Verlag, Berlin, Germany.10.1007/978-3-662-10378-4_10Suche in Google Scholar
Santos R.M.D.B., Firmino A.A., de Sá C.M. & Felix C.R. 1996. Keratinolytic activity ofAspergillus fumigatus fresenius. Curr. Microbiol. 33: 364-370.10.1007/s002849900129Suche in Google Scholar PubMed
Schuster E., Dunn-Coleman N., Frisvad J.C. & van Dijck P.W.M. 2002. On the safety of Aspergillus niger - a review. Appl. Microbiol. Biotechnol. 59: 426-435.10.1007/s00253-002-1032-6Suche in Google Scholar PubMed
Thys R.C.S., Lucas F.S., Riffel A., Heeb P. & Brandelli A. 2004. Characterization of a protease of a feather-degrading Microbacterium species. Lett. Appl. Microbiol.39: 181-186.10.1111/j.1472-765X.2004.01558.xSuche in Google Scholar PubMed
Vishwanatha K.S., Appu Rao A.G. & Singh S.A. 2009. Characterisation of acid protease expressed from Aspergillus oryzae MTCC 5341. Food Chem. 114: 402-407.10.1016/j.foodchem.2008.09.070Suche in Google Scholar
Wawrzkiewicz K., Lobarzewski J. & Wolski T. 1987. Intracellular keratinase of Trichophyton gallinae. J. Med. Vet. Mycol. 25: 261-268.10.1080/02681218780000601Suche in Google Scholar
© 2015
Artikel in diesem Heft
- Biodiversity and screening of halophilic bacteria with hydrolytic and antimicrobial activities from Yuncheng Salt Lake, China
- Prokaryotic expression and characterization of a keratinolytic protease from Aspergillus niger
- ABA-dependent sucrose regulation of antioxidant metabolism in wheat cultivars varying in ABA-sensitivity
- Identification of salt tolerant Acacia species for saline land utilisation
- Phylogenetic relationships among Elymus and related diploid genera (Triticeae: Poaceae) based on nuclear rDNA ITS sequences
- Adaptations to oxidative stress in Zea mays roots under short-term Pb2+ exposure
- Zinc alleviates cadmium effects on growth, membrane lipid biosynthesis and peroxidation in Solanum lycopersicum leaves
- Comparison of the floodplain forest floristic composition of two riparian corridors: species richness, alien species and the effect of water regime changes
- Red list of ferns and flowering plants of Slovakia, 5th edition (October 2014)
- Distribution and abundance of Hemolivia mauritanica (Apicomplexa: Haemogregarinidae) and its vector Hyalomma aegyptium in tortoises of Iran
- First record of mite genus Ledermuelleriopsis (Acari: Stigmaeidae) in South America with redescription of L. verricula from Brazil
- The influence of agricultural management on the structure of ground beetle (Coleoptera: Carabidae) assemblages
- Insect community on Jurinea cyanoides (Asteraceae), a plant species protected under NATURA 2000
- Chlorella pyrenoidosa, young barley and fruit peel polyphenols in rat breast cancer model – the effects on plasma lipid metabolism
- Increased endogenous serotonin level in diabetic conditions may lead to cardiac valvulopathy via reactive oxygen species regulation
- Parasitic helminths in grey heron (Ardea cinerea) chicks
Artikel in diesem Heft
- Biodiversity and screening of halophilic bacteria with hydrolytic and antimicrobial activities from Yuncheng Salt Lake, China
- Prokaryotic expression and characterization of a keratinolytic protease from Aspergillus niger
- ABA-dependent sucrose regulation of antioxidant metabolism in wheat cultivars varying in ABA-sensitivity
- Identification of salt tolerant Acacia species for saline land utilisation
- Phylogenetic relationships among Elymus and related diploid genera (Triticeae: Poaceae) based on nuclear rDNA ITS sequences
- Adaptations to oxidative stress in Zea mays roots under short-term Pb2+ exposure
- Zinc alleviates cadmium effects on growth, membrane lipid biosynthesis and peroxidation in Solanum lycopersicum leaves
- Comparison of the floodplain forest floristic composition of two riparian corridors: species richness, alien species and the effect of water regime changes
- Red list of ferns and flowering plants of Slovakia, 5th edition (October 2014)
- Distribution and abundance of Hemolivia mauritanica (Apicomplexa: Haemogregarinidae) and its vector Hyalomma aegyptium in tortoises of Iran
- First record of mite genus Ledermuelleriopsis (Acari: Stigmaeidae) in South America with redescription of L. verricula from Brazil
- The influence of agricultural management on the structure of ground beetle (Coleoptera: Carabidae) assemblages
- Insect community on Jurinea cyanoides (Asteraceae), a plant species protected under NATURA 2000
- Chlorella pyrenoidosa, young barley and fruit peel polyphenols in rat breast cancer model – the effects on plasma lipid metabolism
- Increased endogenous serotonin level in diabetic conditions may lead to cardiac valvulopathy via reactive oxygen species regulation
- Parasitic helminths in grey heron (Ardea cinerea) chicks