The C2-streptavidin delivery system promotes the uptake of biotinylated molecules in macrophages and T-leukemia cells
-
Jörg Fahrer
, Julia Rieger , Ger van Zandbergen and Holger Barth
Abstract
Macrophages are tightly associated with inflammatory diseases as well as carcinogenesis, and therefore represent promising targets for drug delivery and gene transfer. We have recently established a novel protein delivery system based on the binary C2 toxin of Clostridium botulinum and streptavidin, allowing the uptake of exogenous biotinylated molecules into mammalian cells. Here, we applied this C2-streptavidin delivery system to macrophages and other leukocytes. First, the effect of wild-type C2 toxin on different leukocyte cell lines was tested, indicating no differences in sensitivity. Next, the uptake and stability of the engineered C2-streptavidin was analyzed in macrophages and Jurkat T-cells, showing internalization into the cytosol of both cell types with similar kinetics. The transporter did not exhibit any cytotoxic effect and did not interfere with phagocytosis in primary human macrophages. The C2-streptavidin system promoted specific uptake of biotinylated fluorophores into the cytosol of macrophages as revealed by confocal microscopy. In addition, flow cytometry analysis showed a significantly enhanced uptake of biotinylated fluorescent tracers in Jurkat leukemia cells mediated by the C2-streptavidin transporter. Our results demonstrate that C2-streptavidin is a functional delivery system for transport of biotinylated molecules into macrophages and other leukocytes without compromising cell viability and intrinsic functions such as phagocytosis.
©2010 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Guest Editorial
- Highlight: Xenobiotics and Cell Signaling
- Reviews
- An introduction to the molecular basics of aryl hydrocarbon receptor biology
- Mechanisms and cell signaling in alcoholic liver disease
- Superoxide anion and hydrogen peroxide-induced signaling and damage in angiotensin II and aldosterone action
- Breakdown products of neoglucobrassicin inhibit activation of Nrf2 target genes mediated by myrosinase-derived glucoraphanin hydrolysis products
- Cadmium ions promote monocytic differentiation of human leukemia HL-60 cells treated with 1α,25-dihydroxyvitamin D3
- Zonation of heme synthesis enzymes in mouse liver and their regulation by β-catenin and Ha-ras
- The C2-streptavidin delivery system promotes the uptake of biotinylated molecules in macrophages and T-leukemia cells
- Short Communications
- c-Src-mediated activation of Erk1/2 is a reaction of epithelial cells to carbon nanoparticle treatment and may be a target for a molecular preventive strategy
- Loss of gap junctional intercellular communication in rat lung epithelial cells exposed to carbon or silica-based nanoparticles
- Review
- Lipoprotein receptors – an evolutionarily ancient multifunctional receptor family
Articles in the same Issue
- Guest Editorial
- Highlight: Xenobiotics and Cell Signaling
- Reviews
- An introduction to the molecular basics of aryl hydrocarbon receptor biology
- Mechanisms and cell signaling in alcoholic liver disease
- Superoxide anion and hydrogen peroxide-induced signaling and damage in angiotensin II and aldosterone action
- Breakdown products of neoglucobrassicin inhibit activation of Nrf2 target genes mediated by myrosinase-derived glucoraphanin hydrolysis products
- Cadmium ions promote monocytic differentiation of human leukemia HL-60 cells treated with 1α,25-dihydroxyvitamin D3
- Zonation of heme synthesis enzymes in mouse liver and their regulation by β-catenin and Ha-ras
- The C2-streptavidin delivery system promotes the uptake of biotinylated molecules in macrophages and T-leukemia cells
- Short Communications
- c-Src-mediated activation of Erk1/2 is a reaction of epithelial cells to carbon nanoparticle treatment and may be a target for a molecular preventive strategy
- Loss of gap junctional intercellular communication in rat lung epithelial cells exposed to carbon or silica-based nanoparticles
- Review
- Lipoprotein receptors – an evolutionarily ancient multifunctional receptor family