Home Life Sciences Pharmacogenetic features of cathepsin B inhibitors that improve memory deficit and reduce β-amyloid related to Alzheimer's disease
Article
Licensed
Unlicensed Requires Authentication

Pharmacogenetic features of cathepsin B inhibitors that improve memory deficit and reduce β-amyloid related to Alzheimer's disease

  • Vivian Hook , Gregory Hook and Mark Kindy
Published/Copyright: June 11, 2010
Biological Chemistry
From the journal Volume 391 Issue 8

Abstract

Beta-amyloid (Aβ) in the brain is a major factor involved in Alzheimer's disease (AD) that results in severe memory deficit. Our recent studies demonstrate pharmacogenetic differences in the effects of inhibitors of cathepsin B to improve memory and reduce Aβ in different mouse models of AD. The inhibitors improve memory and reduce brain Aβ in mice expressing the wild-type (WT) β-secretase site of human APP, expressed in most AD patients. However, these inhibitors have no effect in mice expressing the rare Swedish (Swe) mutant amyloid precursor protein (APP). Knockout of the cathepsin B decreased brain Aβ in mice expressing WT APP, validating cathepsin B as the target. The specificity of cathepsin B to cleave the WT β-secretase site, but not the Swe mutant site, of APP for Aβ production explains the distinct inhibitor responses in the different AD mouse models. In contrast to cathepsin B, the BACE1 β-secretase prefers to cleave the Swe mutant site. Discussion of BACE1 data in the field indicate that they do not preclude cathepsin B as also being a β-secretase. Cathepsin B and BACE1 could participate jointly as β-secretases. Significantly, the majority of AD patients express WT APP and, therefore, inhibitors of cathepsin B represent candidate drugs for AD.


Corresponding author

Received: 2010-3-9
Accepted: 2010-5-25
Published Online: 2010-06-11
Published in Print: 2010-08-01

©2010 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Guest Editorial
  2. Highlight: The Biology of Proteolytic Systems
  3. Highlight: 6th General Meeting of the International Proteolysis Society
  4. Structure, mechanism and inhibition of γ-secretase and presenilin-like proteases
  5. Is BACE1 a suitable therapeutic target for the treatment of Alzheimer's disease? Current strategies and future directions
  6. Pharmacogenetic features of cathepsin B inhibitors that improve memory deficit and reduce β-amyloid related to Alzheimer's disease
  7. Proteases in lymphocyte killer function: redundancy, polymorphism and questions remaining
  8. Pseudo-active sites of protease domains: HGF/Met and Sonic hedgehog signaling in cancer
  9. Proteolysis of platelet receptors in humans and other species
  10. Blunting the knife: development of vaccines targeting digestive proteases of blood-feeding helminth parasites
  11. Impaired turnover of autophagolysosomes in cathepsin L deficiency
  12. Nuclear cysteine cathepsin variants in thyroid carcinoma cells
  13. Deletion of cathepsin H perturbs angiogenic switching, vascularization and growth of tumors in a mouse model of pancreatic islet cell cancer
  14. Cathepsin E enhances anticancer activity of doxorubicin on human prostate cancer cells showing resistance to TRAIL-mediated apoptosis
  15. Hydrophilic residues surrounding the S1 and S2 pockets contribute to dimerisation and catalysis in human dipeptidyl peptidase 8 (DP8)
  16. Molecular contortionism – on the physical limits of serpin ‘loop-sheet’ polymers
  17. The substrate specificity profile of human granzyme A
  18. Use of granzyme B-based fluorescent protein reporters to monitor granzyme distribution and granule integrity in live cells
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bc.2010.110/html
Scroll to top button