Brain tumor stem cells
-
Thomas Palm
Abstract
Since the end of the ‘no-new-neuron’ theory, emerging evidence from multiple studies has supported the existence of stem cells in neurogenic areas of the adult brain. Along with this discovery, neural stem cells became candidate cells being at the origin of brain tumors. In fact, it has been demonstrated that molecular mechanisms controlling self-renewal and differentiation are shared between brain tumor stem cells and neural stem cells and that corruption of genes implicated in these pathways can direct tumor growth. In this regard, future anticancer approaches could be inspired by uncovering such redundancies and setting up treatments leading to exhaustion of the cancer stem cell pool. However, deleterious effects on (normal) neural stem cells should be minimized. Such therapeutic models underline the importance to study the cellular mechanisms implicated in fate decisions of neural stem cells and the oncogenic derivation of adult brain cells. In this review, we discuss the putative origins of brain tumor stem cells and their possible implications on future therapies.
©2010 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Guest Editorial
- Highlight: Molecular Neurobiology
- HIGHLIGHT: MOLECULAR NEUROBIOLOGY
- Actin-mediated gene expression in neurons: the MRTF-SRF connection
- RIM proteins and their role in synapse function
- Brain tumor stem cells
- The mitochondria permeability transition pore complex in the brain with interacting proteins – promising targets for protection in neurodegenerative diseases
- Involvement of the calcium sensor GCAP1 in hereditary cone dystrophies
- Live cell imaging of cytoskeletal dynamics in neurons using fluorescence photoactivation
- REVIEWS
- Contributions of the Ah receptor to bilirubin homeostasis and its antioxidative and atheroprotective functions
- Cathepsin L in metastatic bone disease: therapeutic implications
- GENES AND NUCLEIC ACIDS
- Activity-based selection of HIV-1 reverse transcriptase variants with decreased polymerization fidelity
- CELL BIOLOGY AND SIGNALING
- Multiple protective functions of catalase against intercellular apoptosis-inducing ROS signaling of human tumor cells
- Molecular characterisation of ‘transmembrane protein 192’ (TMEM192), a novel protein of the lysosomal membrane
- PROTEOLYSIS
- Functional study of elafin cleaved by Pseudomonas aeruginosa metalloproteinases
Articles in the same Issue
- Guest Editorial
- Highlight: Molecular Neurobiology
- HIGHLIGHT: MOLECULAR NEUROBIOLOGY
- Actin-mediated gene expression in neurons: the MRTF-SRF connection
- RIM proteins and their role in synapse function
- Brain tumor stem cells
- The mitochondria permeability transition pore complex in the brain with interacting proteins – promising targets for protection in neurodegenerative diseases
- Involvement of the calcium sensor GCAP1 in hereditary cone dystrophies
- Live cell imaging of cytoskeletal dynamics in neurons using fluorescence photoactivation
- REVIEWS
- Contributions of the Ah receptor to bilirubin homeostasis and its antioxidative and atheroprotective functions
- Cathepsin L in metastatic bone disease: therapeutic implications
- GENES AND NUCLEIC ACIDS
- Activity-based selection of HIV-1 reverse transcriptase variants with decreased polymerization fidelity
- CELL BIOLOGY AND SIGNALING
- Multiple protective functions of catalase against intercellular apoptosis-inducing ROS signaling of human tumor cells
- Molecular characterisation of ‘transmembrane protein 192’ (TMEM192), a novel protein of the lysosomal membrane
- PROTEOLYSIS
- Functional study of elafin cleaved by Pseudomonas aeruginosa metalloproteinases