Article
Licensed
Unlicensed
Requires Authentication
Highlight: Signal Transduction and Disease
-
Fred Wittinghofer
Published/Copyright:
March 4, 2010
Published Online: 2010-03-04
Published in Print: 2010-02-26
©2010 by Walter de Gruyter Berlin New York
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- EDITORIAL
- Highlight: Signal Transduction and Disease
- HIGHLIGHT: SIGNAL TRANSDUCTION AND DISEASE
- Phosphorylase and the origin of reversible protein phosphorylation
- β-Catenin as a multilayer modulator of zonal cytochrome P450 expression in mouse liver
- Glycome profiling using modern glycomics technology: technical aspects and applications
- Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity
- MAP3K1 functionally interacts with Axin1 in the canonical Wnt signalling pathway
- Signal transduction by the atopy-associated human thymic stromal lymphopoietin (TSLP) receptor depends on Janus kinase function
- GENES AND NUCLEIC ACIDS
- 6S RNA-dependent inhibition of RNA polymerase is released by RNA-dependent synthesis of small de novo products
- PROTEIN STRUCTURE AND FUNCTION
- Analysis of the DNA-binding activity of p53 mutants using functional protein microarrays and its relationship to transcriptional activation
- Peptides from the Mycobacterium tuberculosis Rv1980c protein involved in human cell infection: insights into new synthetic subunit vaccine candidates
- The epimerase activity of anthocyanidin reductase from Vitis vinifera and its regiospecific hydride transfers
- Antibacterial activity of radical scavengers against class Ib ribonucleotide reductase from Bacillus anthracis
- CELL BIOLOGY AND SIGNALING
- Signal transduction in CHO cells stably transfected with domain-selective forms of murine ACE
- The impact of methylmercury on 1,25-dihydroxyvitamin D3-induced transcriptomic responses in dolphin skin cells
- PROTEOLYSIS
- An examination of the proteolytic activity for bovine pregnancy-associated glycoproteins 2 and 12
- Analysis of an autoproteolytic activity of rice yellow mottle virus silencing suppressor P1
- Identification of novel peptide inhibitors for human trypsins
Articles in the same Issue
- EDITORIAL
- Highlight: Signal Transduction and Disease
- HIGHLIGHT: SIGNAL TRANSDUCTION AND DISEASE
- Phosphorylase and the origin of reversible protein phosphorylation
- β-Catenin as a multilayer modulator of zonal cytochrome P450 expression in mouse liver
- Glycome profiling using modern glycomics technology: technical aspects and applications
- Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity
- MAP3K1 functionally interacts with Axin1 in the canonical Wnt signalling pathway
- Signal transduction by the atopy-associated human thymic stromal lymphopoietin (TSLP) receptor depends on Janus kinase function
- GENES AND NUCLEIC ACIDS
- 6S RNA-dependent inhibition of RNA polymerase is released by RNA-dependent synthesis of small de novo products
- PROTEIN STRUCTURE AND FUNCTION
- Analysis of the DNA-binding activity of p53 mutants using functional protein microarrays and its relationship to transcriptional activation
- Peptides from the Mycobacterium tuberculosis Rv1980c protein involved in human cell infection: insights into new synthetic subunit vaccine candidates
- The epimerase activity of anthocyanidin reductase from Vitis vinifera and its regiospecific hydride transfers
- Antibacterial activity of radical scavengers against class Ib ribonucleotide reductase from Bacillus anthracis
- CELL BIOLOGY AND SIGNALING
- Signal transduction in CHO cells stably transfected with domain-selective forms of murine ACE
- The impact of methylmercury on 1,25-dihydroxyvitamin D3-induced transcriptomic responses in dolphin skin cells
- PROTEOLYSIS
- An examination of the proteolytic activity for bovine pregnancy-associated glycoproteins 2 and 12
- Analysis of an autoproteolytic activity of rice yellow mottle virus silencing suppressor P1
- Identification of novel peptide inhibitors for human trypsins