Home MAP3K1 functionally interacts with Axin1 in the canonical Wnt signalling pathway
Article
Licensed
Unlicensed Requires Authentication

MAP3K1 functionally interacts with Axin1 in the canonical Wnt signalling pathway

  • Ser Sue Ng , Tokameh Mahmoudi , Vivian S.W. Li , Pantelis Hatzis , Paul J. Boersema , Shabaz Mohammed , Albert J. Heck and Hans Clevers
Published/Copyright: February 3, 2010

Abstract

A central point of regulation in the Wnt/β-catenin signalling pathway is the formation of the β-catenin destruction complex. Axin1, an essential negative regulator of Wnt signalling, serves as a scaffold within this complex and is critical for rapid turnover of β-catenin. To examine the mechanism by which Wnt signalling disables the destruction complex, we used an immunoprecipitation-coupled proteomics approach to identify novel endogenous binding partners of Axin1. We found mitogen-activated protein kinase kinase kinase 1 (MAP3K1) as an Axin1 interactor in Ls174T colorectal cancer (CRC) cells. Importantly, confirmation of this interaction in HEK293T cells indicated that the Axin1-MAP3K1 interaction is induced and modulated by Wnt stimulation. siRNA depletion of MAP3K1 specifically abrogated TCF/LEF-driven transcription and Wnt3A-driven endogenous gene expression in both HEK293T as well as DLD-1 CRC. Expression of ubiquitin ligase mutants of MAP3K1 abrogated TCF/LEF transcription, whereas kinase mutants had no effect in TCF-driven activity, highlighting the essential role of the MAP3K1 E3 ubiquitin ligase activity in regulation of the Wnt/β-catenin pathway. These results suggest that MAP3K1, previously reported as an Axin1 inter-actor in c-Jun NH2-terminal kinase pathway, is also involved in the canonical Wnt signalling pathway and positively regulates expression of Wnt target genes.

Keywords: axin; β-catenin; JNK; MAP3K1; Wnt

Corresponding author

Received: 2010-09-21
Accepted: 2010-02-11
Published Online: 2010-02-03
Published in Print: 2010-02-26

©2010 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. EDITORIAL
  2. Highlight: Signal Transduction and Disease
  3. HIGHLIGHT: SIGNAL TRANSDUCTION AND DISEASE
  4. Phosphorylase and the origin of reversible protein phosphorylation
  5. β-Catenin as a multilayer modulator of zonal cytochrome P450 expression in mouse liver
  6. Glycome profiling using modern glycomics technology: technical aspects and applications
  7. Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity
  8. MAP3K1 functionally interacts with Axin1 in the canonical Wnt signalling pathway
  9. Signal transduction by the atopy-associated human thymic stromal lymphopoietin (TSLP) receptor depends on Janus kinase function
  10. GENES AND NUCLEIC ACIDS
  11. 6S RNA-dependent inhibition of RNA polymerase is released by RNA-dependent synthesis of small de novo products
  12. PROTEIN STRUCTURE AND FUNCTION
  13. Analysis of the DNA-binding activity of p53 mutants using functional protein microarrays and its relationship to transcriptional activation
  14. Peptides from the Mycobacterium tuberculosis Rv1980c protein involved in human cell infection: insights into new synthetic subunit vaccine candidates
  15. The epimerase activity of anthocyanidin reductase from Vitis vinifera and its regiospecific hydride transfers
  16. Antibacterial activity of radical scavengers against class Ib ribonucleotide reductase from Bacillus anthracis
  17. CELL BIOLOGY AND SIGNALING
  18. Signal transduction in CHO cells stably transfected with domain-selective forms of murine ACE
  19. The impact of methylmercury on 1,25-dihydroxyvitamin D3-induced transcriptomic responses in dolphin skin cells
  20. PROTEOLYSIS
  21. An examination of the proteolytic activity for bovine pregnancy-associated glycoproteins 2 and 12
  22. Analysis of an autoproteolytic activity of rice yellow mottle virus silencing suppressor P1
  23. Identification of novel peptide inhibitors for human trypsins
Downloaded on 5.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bc.2010.028/html
Scroll to top button