Startseite Medizin Computer-aided analysis of data from evaluation sheets of subjects with autism spectrum disorders
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Computer-aided analysis of data from evaluation sheets of subjects with autism spectrum disorders

  • Krzysztof Pancerz EMAIL logo , Aneta Derkacz , Olga Mich und Jerzy Gomula
Veröffentlicht/Copyright: 21. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we deal with the problem of the initial analysis of data from evaluation sheets of subjects with autism spectrum disorders (ASDs). In the research, we use an original evaluation sheet including questions about competencies grouped into 17 spheres. An initial analysis is focused on the data preprocessing step including the filtration of cases based on consistency factors. This approach enables us to obtain simpler classifiers in terms of their size (a number of nodes and leaves in decision trees and a number of classification rules).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Greenes RA. Clinical decision support. The road ahead. Boston, MA: Elsevier, 2007.Suche in Google Scholar

2. Garcia S, Luengo J, Herrera F. Data preprocessing in data mining. Intelligent systems reference library, vol. 72. Switzerland: Springer International Publishing, 2015.10.1007/978-3-319-10247-4Suche in Google Scholar

3. Han J, Kamber M, Pei J. Data mining: concept and techniques. Waltham, MA: Morgan Kaufmann, 2012.Suche in Google Scholar

4. Cios K, Pedrycz W, Swiniarski R, Kurgan L. Data mining. A knowledge discovery approach. New York: Springer, 2007.Suche in Google Scholar

5. Grochowski M, Jankowski N. Comparison of instances selection algorithms I. Algorithms survey. In: Rutkowski L, Siekmann J, Tadeusiewicz R, Zadeh LA, editors. Artificial intelligence and soft computing. ICAISC 2004. Ser. LNAI 3070. Berlin/Heidelberg: Springer-Verlag, 2004:598–603.10.1007/978-3-540-24844-6_90Suche in Google Scholar

6. Pancerz K, Derkacz A, Gomuła J. Consistency-based preprocessing for classification of data coming from evaluation sheets of subjects with ASDs. In: Position papers of the 2015 Federated Conference on Computer Science and Information Systems, 13–16 September 2015, Lodz, Poland, 2015:63–7.10.15439/2015F393Suche in Google Scholar

7. Pancerz K. Extensions of information systems: the rough set perspective. Trans Rough Sets 2009;X:157–68.10.1007/978-3-642-03281-3_6Suche in Google Scholar

8. Piątek Ł, Pancerz K, Owsiany G. Validation of data categorization using extensions of information systems: experiments on melanocytic skin lesion data. In: Federated Conference on Computer Science and Information Systems, 18–21 September 2011, Szczecin, Poland, 2011:147–51.Suche in Google Scholar

9. Pawlak Z. Rough sets. Theoretical aspects of reasoning about data. Dordrecht: Kluwer Academic Publishers, 1991.10.1007/978-94-011-3534-4Suche in Google Scholar

10. Pancerz K. On selected functionality of the Classification and Prediction Software System (CLAPSS). In: International Conference on Information and Digital Technologies, 7–9 July 2015, Zilina, Slovakia, 2015:267–74.10.1109/DT.2015.7222984Suche in Google Scholar

11. Pawlak Z, Skowron A. Rudiments of rough sets. Inf Sci 2007;177:3–27.10.1016/j.ins.2006.06.003Suche in Google Scholar

12. Suraj Z, Pancerz K, Owsiany G. On consistent and partially consistent extensions of information systems. In: Ślęzak D, Wang G, Szczuka M, Duntsch I, Yao Y, editors. Rough sets, fuzzy sets, data mining, and granular computing. Ser. LNAI 3641. Berlin/Heidelberg: Springer-Verlag, 2005:224–33.10.1007/11548669_24Suche in Google Scholar

13. Moshkov M, Skowron A, Suraj Z. On testing membership to maximal consistent extensions of information systems. In: Greco S, Hata Y, Hirano S, Inuiguchi M, Miyamoto S, Nguyen HS, Slowinski R, editors. Rough sets and current trends in computing. Ser. LNAI 4259. Berlin/Heidelberg: Springer-Verlag, 2006:85–90.10.1007/11908029_10Suche in Google Scholar

14. Suraj Z. Some remarks on extensions and restrictions of information systems. In: Ziarko W, Yao Y, editors. Rough sets and current trends in computing. Ser. LNAI 2005. Berlin/Heidelberg: Springer-Verlag, 2001:204–11.10.1007/3-540-45554-X_24Suche in Google Scholar

15. Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, et al. Orange: data mining toolbox in Python. J Mach Learn Res 2013;14:2349–53.Suche in Google Scholar

16. Bazan JG, Szczuka MS. The rough set exploration system. In: Transactions on rough sets III. Ser. LNAI 3400. Berlin/Heidelberg: Springer-Verlag, 2005:37–56.10.1007/11427834_2Suche in Google Scholar

17. Grzymala-Busse J. A new version of the rule induction system LERS. Fundam Inf 1997;31:27–39.10.3233/FI-1997-3113Suche in Google Scholar

Received: 2016-5-27
Accepted: 2016-6-8
Published Online: 2016-7-21
Published in Print: 2016-9-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/bams-2016-0011/pdf
Button zum nach oben scrollen