Startseite Technik Machine learning with nonlinear state space models
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Machine learning with nonlinear state space models

  • Max Schüssler

    Dr.-Ing. Max Schüssler was a research assistant with the working group Automatic Control – Mechatronics of Prof. Dr.-Ing. Oliver Nelles. In his work he focuses on machine learning perspectives for nonlinear system identification and adjacent research fields.

    EMAIL logo
Veröffentlicht/Copyright: 27. Oktober 2022

Abstract

In this dissertation, a novel class of model structures and associated training algorithms for building data-driven nonlinear state space models is developed. The new identification procedure with the resulting model is called local model state space network (LMSSN). Furthermore, recurrent neural networks (RNNs) and their similarities to nonlinear state space models are elaborated on. The overall outstanding performance of the LMSSN is demonstrated on various applications.

Zusammenfassung

In dieser Disseration wird eine neue Klasse von Modellstrukturen und dazugehörigen Trainingsalgorithmen für die datengetriebene Modellierung von nichtlinearen dynamischen Prozessen entwickelt. Der neue Identifikationsalgorithmus mit resultierendem Modell heißt Local Model State Space Network (LMSSN). Außerdem werden rekurrente neuronale Netze (RNNs) und deren Ähnlichkeit zu nichtlinearen Zustandsraummodellen behandelt. Die insgesamt herausragende Leistungsfähigkeit von LMSSN wird anhand einiger Anwendungsbeispiele demonstriert.

About the author

Max Schüssler

Dr.-Ing. Max Schüssler was a research assistant with the working group Automatic Control – Mechatronics of Prof. Dr.-Ing. Oliver Nelles. In his work he focuses on machine learning perspectives for nonlinear system identification and adjacent research fields.

Received: 2022-08-11
Accepted: 2022-08-11
Published Online: 2022-10-27
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/auto-2022-0089/pdf?lang=de
Button zum nach oben scrollen